Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37836016

ABSTRACT

The number of obese people in the world is rising, leading to an increase in the prevalence of type 2 diabetes and other metabolic disorders. The search for medications including natural compounds for the prevention of obesity is an urgent task. Chitosan polysaccharide obtained through the deacetylation of chitin, and its derivatives, including short-chain oligosaccharides (COS), have hypolipidemic, anti-inflammatory, anti-diabetic, and antioxidant properties. Chemical modifications of chitosan can produce derivatives with increased solubility under neutral conditions, making them potential therapeutic substances for use in the treatment of metabolic disorders. Multiple studies both in animals and clinical trials have demonstrated that chitosan improves the gut microbiota, restores intestinal barrier dysfunction, and regulates thermogenesis and lipid metabolism. However, the effect of chitosan is rather mild, especially if used for a short periods, and is mostly independent of chitosan's physical characteristics. We hypothesized that the major mechanism of chitosan's anti-obesity effect is its flocculant properties, enabling it to collect the chyme in the gastrointestinal tract and facilitating the removal of extra food. This review summarizes the results of the use of COS, chitosan, and its derivatives in obesity control in terms of pathways of action and structural activity.

2.
Materials (Basel) ; 16(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37629823

ABSTRACT

Surgical operations on the peritoneum are often associated with the formation of adhesions, which can interfere with the normal functioning of the internal organs. The effectiveness of existing barrier materials is relatively low. In this work, the effectiveness of soluble alginate-polyvinylpyrrolidone (PVP-Alg) and non-soluble Ca ion cross-linked (PVP-Alg-Ca) films in preventing these adhesions was evaluated. Experiments in vivo were performed on mice via mechanical injury to the adjacent peritoneum wall and the caecum, followed by the application of PVP-Alg or PVP-Alg-Ca films to the injured area. After 7 days, samples from the peritoneal wall and caecum were analyzed using histology and quantitative polymerase chain reaction (qPCR). It was shown that the expression of genes responsible for adhesion formation in the caecum in the PVP-Alg group was comparable to that in the control group, while in the PVP-Alg-Ca group, it increased by 5-10 times. These results were consistent with the histology: in the PVP-Alg group, the adhesions did not form, while in the PVP-Alg-Ca group, the adhesions corresponded to five points on the adhesion scale. Therefore, the formation of intraperitoneal adhesions can be effectively prevented by non-crosslinked, biodegradable PVP-Alg films, whereas cross-linked, not biodegradable PVP-Alg-Ca films cause inflammation and adhesion formation.

3.
Polymers (Basel) ; 15(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37177269

ABSTRACT

Quaternary chitosan derivative with covalently bonded antioxidant (QCG) was used as media for synthesis of selenium nanoparticles (SeNPs). SeNPs were characterized using AFM, TEM, and DLS methods. The data confirmed the formation of stable nanoparticles with a positive charge (34.86-46.73 mV) and a size in the range 119.5-238.6 nm. The antibacterial and fungicidal activity of SeNPs occurred within the range of values for chitosan derivatives. In all cases, the highest activity was against C. albicans (MIC 125 µg/mL). The toxicity of the modified selenium nanoparticles to eukaryotic cells was significantly higher. Among nanoparticle samples, SeNPs that were synthesized at 55 °C demonstrated the highest toxicity against Colo357 and HaCaT cell lines. Based on these results, SeNPs loaded with doxorubicin were obtained. DOX loading efficiency was about 18%. QCG-SeNPs loaded with DOX at a concentration of 1.25 µg/mL inhibited more than 50% of hepatocarcinoma (Colo 357) cells and about 70% of keratinocytes (HaCaT).

4.
Curr Issues Mol Biol ; 44(10): 4987-4999, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36286054

ABSTRACT

Chemokines are involved in the humoral regulation of body homeostasis. Changes in the blood level of chemokines were found in cancer, atherosclerosis, diabetes, and other systemic diseases. It is essential to distinguish the effects of co-morbid pathologies and cancer on the level of chemokines in the blood. We aimed to analyze, by multiplex cytometry, the levels of chemokines in the blood of healthy young volunteers as well as of intact mice and mice with CT26 colon and Pan02 pancreatic tumors. Two types of chemokines were identified both in human and murine plasmas: homeostatic ones, which were found in high concentrations (>100 pg/mL), and inducible ones, which can be undetectable or determined at very low levels (0−100 pg/mL). There was a high variability in the chemokine levels, both in healthy humans and mice. To analyze chemokine levels during tumor growth, C57BL/6 and BALB/c were inoculated with Pan02 or CT26 tumor cells, accordingly. The tumors significantly differed in the growth and the mortality of mice. However, the blood chemokine levels did not change in tumor-bearing mice until the very late stages. Taken collectively, blood chemokine level is highly variable and reflects in situ homeostasis. Care should be taken when considering chemokines as prognostic parameters or therapeutic targets in cancer.

5.
Article in English | MEDLINE | ID: mdl-36293642

ABSTRACT

BACKGROUND: Diesel exhaust particles (DEPs) are leading to a general increase in atopic diseases worldwide. However, it is still unknown whether DEPs induce systemic B-cell IgE class switching in secondary lymphoid organs or locally in the lungs in inducible bronchus-associated lymphoid tissue (iBALT). The aim of this work was to identify the exact site of DEP-mediated B-cell IgE class switching and pro-allergic antibody production. METHODS: We immunized BALB/c mice with different OVA doses (0.3 and 30 µg) intranasally in the presence and absence of two types of DEPs, SRM1650B and SRM2786. We used low (30 µg) and high (150 µg) DEP doses. RESULTS: Only a high DEP dose induced IgE production, regardless of the particle type. Local IgE class switching was stimulated upon treatment with both types of particles with both low and high OVA doses. Despite the similar ability of the two standard DEPs to stimulate IgE production, their ability to induce iBALT formation and growth was markedly different upon co-administration with low OVA doses. CONCLUSIONS: DEP-induced local IgE class switching takes place in preexisting iBALTs independent of de novo iBALT formation, at least in the case of SRM1650B co-administered with low OVA doses.


Subject(s)
Hypersensitivity , Vehicle Emissions , Mice , Animals , Immunoglobulin Class Switching , Mice, Inbred BALB C , Immunoglobulin E
6.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35764367

ABSTRACT

BACKGROUND: Both ganglioside GD2-targeted immunotherapy and antibody-drug conjugates (ADCs) have demonstrated clinical success as solid tumor therapies in recent years, yet no research has been carried out to develop anti-GD2 ADCs against solid tumors. This is the first study to analyze cytotoxic activity of clinically relevant anti-GD2 ADCs in a wide panel of cell lines with varying GD2 expression and their effects in mouse models of GD2-positive solid cancer. METHODS: Anti-GD2 ADCs were generated based on the GD2-specific antibody ch14.18 approved for the treatment of neuroblastoma and commonly used drugs monomethyl auristatin E (MMAE) or F (MMAF), conjugated via a cleavable linker by thiol-maleimide chemistry. The antibody was produced in a mammalian expression system, and its specific binding to GD2 was analyzed. Antigen-binding properties and biodistribution of the ADCs in mice were studied in comparison with the parent antibody. Cytotoxic effects of the ADCs were evaluated in a wide panel of GD2-positive and GD2-negative tumor cell lines of neuroblastoma, glioma, sarcoma, melanoma, and breast cancer. Their antitumor effects were studied in the B78-D14 melanoma and EL-4 lymphoma syngeneic mouse models. RESULTS: The ch14.18-MMAE and ch14.18-MMAF ADCs retained antigen-binding properties of the parent antibody. Direct dependence of the cytotoxic effect on the level of GD2 expression was observed in cell lines of different origin for both ADCs, with IC50 below 1 nM for the cells with high GD2 expression and no cytotoxic effect for GD2-negative cells. Within the analyzed cell lines, ch14.18-MMAF was more effective in the cells overexpressing GD2, while ch14.18-MMAE had more prominent activity in the cells expressing low GD2 levels. The ADCs had a similar biodistribution profile in the B78-D14 melanoma model compared with the parent antibody, reaching 7.7% ID/g in the tumor at 48 hours postinjection. The average tumor size in groups treated with ch14.18-MMAE or ch14.18-MMAF was 2.6 times and 3.8 times smaller, respectively, compared with the control group. Antitumor effects of the anti-GD2 ADCs were also confirmed in the EL-4 lymphoma model. CONCLUSION: These findings validate the potential of ADCs targeting ganglioside GD2 in treating multiple GD2-expressing solid tumors.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Melanoma , Neuroblastoma , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gangliosides , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mammals , Mice , Tissue Distribution
7.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35564105

ABSTRACT

Multifunctional nanocomposites that combine both magnetic and photoluminescent (PL) properties provide significant advantages for nanomedical applications. In this work, a one-stage synthesis of magneto-luminescent nanocomposites (MLNC) with subsequent stabilization is proposed. Microwave synthesis of magnetic carbon dots (M-CDs) was carried out using precursors of carbon dots and magnetic nanoparticles. The effect of stabilization on the morphological and optical properties of nanocomposites has been evaluated. Both types of nanocomposites demonstrate magnetic and PL properties simultaneously. The resulting MLNCs demonstrated excellent solubility in water, tunable PL with a quantum yield of up to 28%, high photostability, and good cytocompatibility. Meanwhile, confocal fluorescence imaging showed that M-CDs were localized in the cell nuclei. Consequently, the multifunctional nanocomposites M-CDs are promising candidates for bioimaging and therapy.

8.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216249

ABSTRACT

Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton's Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon-gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4-9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.


Subject(s)
Cell Differentiation/drug effects , Gold/pharmacology , Metal Nanoparticles/administration & dosage , Secretome/drug effects , Silicon/pharmacology , Wharton Jelly/drug effects , Adipogenesis/drug effects , Animals , CD13 Antigens/metabolism , Chondrogenesis/drug effects , Female , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Phenotype , Secretome/metabolism , Thy-1 Antigens/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wharton Jelly/metabolism
9.
Materials (Basel) ; 15(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35009173

ABSTRACT

Diabetes mellitus continues to be one of the most common diseases often associated with diabetic ulcers. Chitosan is an attractive biopolymer for wound healing due to its biodegradability, biocompatibility, mucoadhesiveness, low toxicity, and hemostatic effect. A panel of hydrogels based on chitosan, collagen, and silver nanoparticels were produced to treat diabetic wounds. The antibacterial activity, cytotoxicity, swelling, rheological properties, and longitudinal sections of hydrogels were studied. The ability of the gels for wound healing was studied in CD1 mice with alloxan-induced diabetes. Application of the gels resulted in an increase in VEGF, TGF-b1, IL-1b, and TIMP1 gene expression and earlier wound closure in a comparison with control untreated wounds. All gels increased collagen deposition, hair follicle repair, and sebaceous glands formation. The results of these tests show that the obtained hydrogels have good mechanical properties and biological activity and have potential applications in the field of wound healing. However, clinical studies are required to compare the efficacy of the gels as animal models do not reproduce full diabetes pathology.

10.
Carbohydr Polym ; 234: 115916, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32070535

ABSTRACT

In presented study, various chitosan derivatives containing covalently bounded gallic acid were obtained: chitosan with gallic acid (CG), quaternized chitosan with gallic acid (QCG), and succinylated chitosan with gallic acid (SCG). Chitosan derivatives were used as stabilizing and reducing agents in the synthesis of silver nanoparticles (AgNPs). The dimensional characteristics of nanomaterials were determined by transmission electron (TEM), dynamic light scattering (DLS) and atomic force (AFM) microscopy, antibacterial activity (against E. coli, S. epidermidis), cytotoxicity (HaCaT, Colo 357 cell lines) and hemocompatibility. Among all samples, QCG-AgNPs showed low toxicity in the range of studied concentrations (3.125-100 µg/ml) high stability of nanoparticle for 4 months (according to UV.spectroscopy data) the highest antibacterial activity against S. epidermidis (3.91 µg/ml). The high antibacterial activity, stability, and simplicity of the process of producing AgNPs based on the QCG derivative reveals that a new method for producing modified AgNPs deserves future consideration.

11.
Colloids Surf B Biointerfaces ; 182: 110342, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31299538

ABSTRACT

Here we report a green synthesis of ZnSe quantum dots (QDs) in aqueous solution of polyampholyte chitosan derivative - N-(2-carboxyethyl)chitosan (CEC) with substitution degrees (DS) from 0.7 to 1.3 and molecular weight (MW) of 40 kDa and 150 kDa. We have shown that the maximum intensity of photoluminescence (PL) is exhibited by ZnSe QDs synthesized in solutions of CEC with DS 1 at Se:Zn molar ratio 1:2.5. The defect-related band was predominant in the PL spectra of ZnSe QDs obtained at room temperature; however, hydrothermal treatment at 80-150 °C during 1-2 h significantly increased contribution of exciton emission to the spectra. Cytotoxicity of ZnSe QDs was investigated by MTT assay using cancer cell lines SKOV-3; SkBr-3; PANC-1; Colon-26 and human embryonic kidney cell line HEK293. Cytotoxicity of ZnSe QDs did not depend on MW or DS of CEC but significantly depended on the cell line, being the lowest for normal human cells HEK293 and breast cancer cell line SKOV-3. The hydrothermally treated ZnSe QDs showed higher toxicity toward both normal and cancer cell lines. Since ZnSe QDs were toxic for most of the investigated cancer cell lines, they cannot be used as inert tracers for bioimaging, but can be promising for further investigation for anticancer therapy.


Subject(s)
Chitosan/analogs & derivatives , Quantum Dots/chemistry , Selenium Compounds/chemical synthesis , Zinc Compounds/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Chitosan/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Hot Temperature , Humans , Ligands , Luminescence , Molecular Weight , Organ Specificity , Oxidation-Reduction , Quantum Dots/toxicity , Selenium Compounds/toxicity , Solutions , Water/chemistry , Zinc Compounds/toxicity
12.
World J Gastroenterol ; 24(21): 2291-2299, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29881238

ABSTRACT

AIM: To investigate the effect of dietary fiber on symptoms and esophageal function testing parameters in non-erosive gastroesophageal reflux disease (GERD) (NERD) patients. METHODS: Thirty-six NERD patients with low (< 20 g/d) dietary fiber intake were enrolled in the study. They were examined with the use of symptom questionnaire (GERD-Q), high-resolution esophageal manometry, 24-h esophageal pH-impedance examinations, and food frequency questionnaire before and after 10 d of usual diet supplemented by psyllium 5.0 g TID. Complete data of 30 patients were available to the final analysis. The obtained results were analyzed with the use of non-parametric statistics (Wilcoxon matched pairs test). RESULTS: The number of patients experiencing heartburn was less (93.3% at baseline vs 40% at the end of the study, P < 0.001) and the GERD-Q score decreased (mean ± SD: 10.9 ± 1.7 vs 6.0 ± 2.3, P < 0.001) after the treatment period. Minimal resting lower esophageal sphincter (LES) pressure increased from 5.41 ± 10.1 to 11.3 ± 9.4 mmHg (P = 0.023), but no change in residual LES pressure and mean resting pressure was found. Total number of gastroesophageal refluxes (GER) decreased from 67.9 ± 17.7 to 42.4 ± 13.5 (P < 0.001) predominantly by acid and weak acid types of GERs. No significant change in mean esophageal pH and % of time pH < 4 was registered. Maximal reflux time decreased from 10.6 ± 12.0 min to 5.3 ± 3.7 min (P < 0.05). CONCLUSION: Fiber-enriched diet led to a significant increase of minimal lower esophageal sphincter resting pressure, a decrease of number of gastroesophageal refluxes, and a decrease of heartburn frequency per week in NERD.


Subject(s)
Dietary Fiber/administration & dosage , Esophageal Sphincter, Lower/physiopathology , Gastroesophageal Reflux/diet therapy , Adult , Diet Surveys , Female , Gastroesophageal Reflux/physiopathology , Gastrointestinal Motility , Heartburn , Humans , Male , Manometry , Middle Aged , Prospective Studies , Treatment Outcome
13.
J Biomed Mater Res A ; 105(2): 547-556, 2017 02.
Article in English | MEDLINE | ID: mdl-27750379

ABSTRACT

Today, there is a need for the development of biomaterials with novel properties for biomedical purposes. The biocompatibility of materials is a key factor in determining its possible use in biomedicine. In this study, composite cryogels were obtained based on pectin and chitosan using ionic cryotropic gelation. For cryogel preparation, apple pectin (AP), Heracleum L. pectin (HP), and chitosan samples with different physical and chemical characteristics were used. The properties of pectin-chitosan cryogels were found to depend on the structural features and physicochemical characteristics of the pectin and chitosan within them. The addition of chitosan to cryogels can increase their mechanical strength, cause change in surface morphology, increase the degradation time, and enhance adhesion to biological tissues. Cryogels based on AP were less immunogenic when compared with cryogels from HP. Cryogels based on AP and HP were hemocompatible and the percentage of red blood cells hemolysis was less than 5%. Unlike cryogels based on HP, which exhibited moderate cytotoxicity, cryogels based on AP exhibited light cytotoxicity. Based on the results of low immunogenicity, light cytotoxicity data as well as a low level of hemolysis of composite cryogels based on AP and chitosan are biocompatible and can potentially be used in biomedicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 547-556, 2017.


Subject(s)
Chitosan , Cryogels , Materials Testing , Pectins , Animals , Chitosan/chemistry , Chitosan/pharmacology , Cryogels/chemistry , Cryogels/pharmacology , Humans , Malus/chemistry , Mice , NIH 3T3 Cells , Pectins/chemistry , Pectins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...