Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Mol Cancer Ther ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561023

ABSTRACT

CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of AML blasts, making it an attractive target for therapy of acute myeloid leukemia (AML). While previous CD33-targeting antibody-drug conjugates (ADCs) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novel ADC with improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linker-payloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated anti-tumor activity at single dose as low as 300 µg/kg in mice, while maintaining tolerability at single dose of 20 - 30 mg/kg in rats. In contrast to both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.

3.
Blood Adv ; 8(7): 1621-1633, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38197948

ABSTRACT

ABSTRACT: Monosomy 7 and del(7q) (-7/-7q) are frequent chromosomal abnormalities detected in up to 10% of patients with acute myeloid leukemia (AML). Despite unfavorable treatment outcomes, no approved targeted therapies exist for patients with -7/-7q. Therefore, we aimed to identify novel vulnerabilities. Through an analysis of data from ex vivo drug screens of 114 primary AML samples, we discovered that -7/-7q AML cells are highly sensitive to the inhibition of nicotinamide phosphoribosyltransferase (NAMPT). NAMPT is the rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Mechanistically, the NAMPT gene is located at 7q22.3, and deletion of 1 copy due to -7/-7q results in NAMPT haploinsufficiency, leading to reduced expression and a therapeutically targetable vulnerability to the inhibition of NAMPT. Our results show that in -7/-7q AML, differentiated CD34+CD38+ myeloblasts are more sensitive to the inhibition of NAMPT than less differentiated CD34+CD38- myeloblasts. Furthermore, the combination of the BCL2 inhibitor venetoclax and the NAMPT inhibitor KPT-9274 resulted in the death of significantly more leukemic blasts in AML samples with -7/-7q than the NAMPT inhibitor alone. In conclusion, our findings demonstrate that AML with -7/-7q is highly sensitive to NAMPT inhibition, suggesting that NAMPT inhibitors have the potential to be an effective targeted therapy for patients with monosomy 7 or del(7q).


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Nicotinamide Phosphoribosyltransferase , Leukemia, Myeloid, Acute/genetics , Chromosome Deletion , Chromosomes, Human, Pair 7
4.
Am J Hematol ; 99(2): E32-E36, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37994196

ABSTRACT

The safety and efficacy of sabatolimab, a novel immunotherapy targeting T-cell immunoglobulin domain and mucin domain-3 (TIM-3), was assessed in combination with hypomethylating agents (HMAs) in patients with HMA-naive revised International Prognostic System Score (IPSS-R) high- or very high-risk myelodysplastic syndromes (HR/vHR-MDS) or chronic myelomonocytic leukemia (CMML). Sabatolimab + HMA had a safety profile similar to that reported for HMA alone and demonstrated durable clinical responses in patients with HR/vHR-MDS. These results support the ongoing evaluation of sabatolimab-based combination therapy in MDS, CMML, and acute myeloid leukemia.


Subject(s)
Antibodies, Monoclonal , Leukemia, Myeloid, Acute , Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Azacitidine/therapeutic use , Decitabine/therapeutic use , Antimetabolites, Antineoplastic/therapeutic use , Myelodysplastic Syndromes/drug therapy , Hepatitis A Virus Cellular Receptor 2/therapeutic use , Leukemia, Myelomonocytic, Chronic/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Antibodies/therapeutic use , Treatment Outcome
6.
Patient Educ Couns ; 115: 107883, 2023 10.
Article in English | MEDLINE | ID: mdl-37421687

ABSTRACT

BACKGROUND: This study aims to explore patients' with acute myeloid leukemia perceptions about precision medicine and their preferences for involvement in this new area of shared decision-making. METHODS: Individual semi-structured interviews were conducted in Finland, Italy and Germany (n = 16). The study population included patients aged 24-79 years. Interviews were analyzed with thematic content analysis. RESULTS: Patient's perceived lack of knowledge as a barrier for their involvement in decision-making. Treatment decisions were often made rapidly based on the patient's intuition and trust for the physician rather than on information, in situations that decrease the patient's decision capacity. The patients emphasized that they are in a desperate situation that makes them willing to accept treatment with low probabilities of being cured. CONCLUSIONS: The study raised important issues regarding patients' understanding of precision medicine and challenges concerning how to involve patients in medical decision-making. Although technical advances were viewed positively, the role of the physician as an expert and person-of-trust cannot be replaced. PRACTICE IMPLICATIONS: Regardless of patients' preferences for involvement in decision-making, information plays a crucial role for patients' perceived involvement in their care. The concepts related to precision medicine are complex and will imply challenges to patient education.


Subject(s)
Leukemia, Myeloid, Acute , Physicians , Humans , Decision Making , Precision Medicine , Leukemia, Myeloid, Acute/therapy , Patient Participation , Physician-Patient Relations , Qualitative Research
7.
Blood ; 141(13): 1610-1625, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36508699

ABSTRACT

Myeloid neoplasms with erythroid or megakaryocytic differentiation include pure erythroid leukemia, myelodysplastic syndrome with erythroid features, and acute megakaryoblastic leukemia (FAB M7) and are characterized by poor prognosis and limited treatment options. Here, we investigate the drug sensitivity landscape of these rare malignancies. We show that acute myeloid leukemia (AML) cells with erythroid or megakaryocytic differentiation depend on the antiapoptotic protein B-cell lymphoma (BCL)-XL, rather than BCL-2, using combined ex vivo drug sensitivity testing, genetic perturbation, and transcriptomic profiling. High-throughput screening of >500 compounds identified the BCL-XL-selective inhibitor A-1331852 and navitoclax as highly effective against erythroid/megakaryoblastic leukemia cell lines. In contrast, these AML subtypes were resistant to the BCL-2 inhibitor venetoclax, which is used clinically in the treatment of AML. Consistently, genome-scale CRISPR-Cas9 and RNAi screening data demonstrated the striking essentiality of BCL-XL-encoding BCL2L1 but not BCL2 or MCL1, for the survival of erythroid/megakaryoblastic leukemia cell lines. Single-cell and bulk transcriptomics of patient samples with erythroid and megakaryoblastic leukemias identified high BCL2L1 expression compared with other subtypes of AML and other hematological malignancies, where BCL2 and MCL1 were more prominent. BCL-XL inhibition effectively killed blasts in samples from patients with AML with erythroid or megakaryocytic differentiation ex vivo and reduced tumor burden in a mouse erythroleukemia xenograft model. Combining the BCL-XL inhibitor with the JAK inhibitor ruxolitinib showed synergistic and durable responses in cell lines. Our results suggest targeting BCL-XL as a potential therapy option in erythroid/megakaryoblastic leukemias and highlight an AML subgroup with potentially reduced sensitivity to venetoclax-based treatments.


Subject(s)
Leukemia, Megakaryoblastic, Acute , Leukemia, Myeloid, Acute , Lymphoma, B-Cell , Animals , Mice , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , bcl-X Protein/genetics , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Cell Differentiation , Apoptosis
8.
Haematologica ; 108(7): 1768-1781, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36519325

ABSTRACT

The BCL-2 inhibitor venetoclax has revolutionized the treatment of acute myeloid leukemia (AML) in patients not benefiting from intensive chemotherapy. Nevertheless, treatment failure remains a challenge, and predictive markers are needed, particularly for relapsed or refractory AML. Ex vivo drug sensitivity testing may correlate with outcomes, but its prospective predictive value remains unexplored. Here we report the results of the first stage of the prospective phase II VenEx trial evaluating the utility and predictiveness of venetoclax sensitivity testing using different cell culture conditions and cell viability assays in patients receiving venetoclax-azacitidine. Participants with de novo AML ineligible for intensive chemotherapy, relapsed or refractory AML, or secondary AML were included. The primary endpoint was the treatment response in participants showing ex vivo sensitivity and the key secondary endpoints were the correlation of sensitivity with responses and survival. Venetoclax sensitivity testing was successful in 38/39 participants. Experimental conditions significantly influenced the predictive accuracy. Blast-specific venetoclax sensitivity measured in conditioned medium most accurately correlated with treatment outcomes; 88% of sensitive participants achieved a treatment response. The median survival was significantly longer for participants who were ex vivo-sensitive to venetoclax (14.6 months for venetoclax-sensitive patients vs. 3.5 for venetoclax-insensitive patients, P<0.001). This analysis illustrates the feasibility of integrating drug-response profiling into clinical practice and demonstrates excellent predictivity. This trial is registered with ClinicalTrials.gov identifier: NCT04267081.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Prospective Studies , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
11.
Cancer Discov ; 12(2): 388-401, 2022 02.
Article in English | MEDLINE | ID: mdl-34789538

ABSTRACT

We generated ex vivo drug-response and multiomics profiling data for a prospective series of 252 samples from 186 patients with acute myeloid leukemia (AML). A functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML, and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a 59% objective response rate for the individually tailored therapies, including 13 complete responses, as well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data integration across all cases enabled the identification of drug response biomarkers, such as the association of IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale drug response data across many patients will enable continuous improvement of the FPMTB recommendations, providing a paradigm for individualized implementation of functional precision cancer medicine. SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional, clinically actionable therapeutic insights for individual patients with AML. Such data can be generated in four days, enabling rapid translation through FPMTB.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Decision Support Techniques , Leukemia, Myeloid, Acute/drug therapy , Patient Care Team , Precision Medicine , Female , Finland , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Remission Induction , Survival Analysis
12.
Sci Rep ; 11(1): 23565, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876631

ABSTRACT

FLT3 internal tandem duplication (FLT3-ITD) is a frequent mutation in acute myeloid leukemia (AML) and remains a strong prognostic factor due to high rate of disease recurrence. Several FLT3-targeted agents have been developed, but determinants of variable responses to these agents remain understudied. Here, we investigated the role FLT3-ITD allelic ratio (ITD-AR), ITD length, and associated gene expression signatures on FLT3 inhibitor response in adult AML. We performed fragment analysis, ex vivo drug testing, and next generation sequencing (RNA, exome) to 119 samples from 87 AML patients and 13 healthy bone marrow controls. We found that ex vivo response to FLT3 inhibitors is significantly associated with ITD-AR, but not with ITD length. Interestingly, we found that the HLF gene is overexpressed in FLT3-ITD+ AML and associated with ITD-AR. The retrospective analysis of AML patients treated with FLT3 inhibitor sorafenib showed that patients with high HLF expression and ITD-AR had better clinical response to therapy compared to those with low ITD-AR and HLF expression. Thus, our findings suggest that FLT3 ITD-AR together with increased HLF expression play a role in variable FLT3 inhibitor responses observed in FLT3-ITD+ AML patients.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , Adult , Aged , Alleles , Antineoplastic Agents/therapeutic use , Case-Control Studies , Female , Gene Duplication , Gene Expression , Humans , In Vitro Techniques , Male , Middle Aged , Mutation , Protein Kinase Inhibitors/therapeutic use , Retrospective Studies , Sorafenib/therapeutic use , Tandem Repeat Sequences , Treatment Outcome
13.
Cell Mol Life Sci ; 78(23): 7851-7872, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34719737

ABSTRACT

Although the development of hematopoietic stem cells (HSC) has been studied in great detail, their heterogeneity and relationships to different cell lineages remain incompletely understood. Moreover, the role of Vascular Adhesion Protein-1 in bone marrow hematopoiesis has remained unknown. Here we show that VAP-1, an adhesin and a primary amine oxidase producing hydrogen peroxide, is expressed on a subset of human HSC and bone marrow vasculature forming a hematogenic niche. Bulk and single-cell RNAseq analyses reveal that VAP-1+ HSC represent a transcriptionally unique small subset of differentiated and proliferating HSC, while VAP-1- HSC are the most primitive HSC. VAP-1 generated hydrogen peroxide acts via the p53 signaling pathway to regulate HSC proliferation. HSC expansion and differentiation into colony-forming units are enhanced by inhibition of VAP-1. Contribution of VAP-1 to HSC proliferation was confirmed with mice deficient of VAP-1, mice expressing mutated VAP-1 and using an enzyme inhibitor. In conclusion, VAP-1 expression allows the characterization and prospective isolation of a new subset of human HSC. Since VAP-1 serves as a check point-like inhibitor in HSC differentiation, the use of VAP-1 inhibitors enables the expansion of HSC.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Proliferation , Fetal Blood/cytology , Hematopoiesis , Hematopoietic Stem Cells/cytology , Vascular Cell Adhesion Molecule-1/physiology , Animals , Bone Marrow Transplantation , Cell Movement , Female , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , RNA-Seq , Stem Cell Niche
14.
Sci Adv ; 7(8)2021 02.
Article in English | MEDLINE | ID: mdl-33608276

ABSTRACT

The extensive drug resistance requires rational approaches to design personalized combinatorial treatments that exploit patient-specific therapeutic vulnerabilities to selectively target disease-driving cell subpopulations. To solve the combinatorial explosion challenge, we implemented an effective machine learning approach that prioritizes patient-customized drug combinations with a desired synergy-efficacy-toxicity balance by combining single-cell RNA sequencing with ex vivo single-agent testing in scarce patient-derived primary cells. When applied to two diagnostic and two refractory acute myeloid leukemia (AML) patient cases, each with a different genetic background, we accurately predicted patient-specific combinations that not only resulted in synergistic cancer cell co-inhibition but also were capable of targeting specific AML cell subpopulations that emerge in differing stages of disease pathogenesis or treatment regimens. Our functional precision oncology approach provides an unbiased means for systematic identification of personalized combinatorial regimens that selectively co-inhibit leukemic cells while avoiding inhibition of nonmalignant cells, thereby increasing their likelihood for clinical translation.

15.
Leukemia ; 34(12): 3186-3196, 2020 12.
Article in English | MEDLINE | ID: mdl-32651543

ABSTRACT

Pan-RAF inhibitors have shown promise as antitumor agents in RAS and RAF mutated solid cancers. However, the efficacy of pan-RAF inhibitors in acute myeloid leukemia (AML) has not previously been explored. In AML, the RAS-RAF-MEK-ERK (MAPK) pathway is one of the most aberrantly activated oncogenic pathways, but previous targeting of this pathway by MEK inhibitors has not proven effective in clinical trials. Here we show that pan-RAF inhibition, but not MEK inhibition, induced cell death in 29% of AML samples while being nontoxic toward healthy bone marrow cells. Mechanistically, pan-RAF inhibition downregulated MCL1 protein synthesis and induced apoptosis in cells dependent on MCL1 for their survival. Furthermore, the combination of a pan-RAF and a BCL2 inhibitor overcame resistance to either compound alone in AML cell lines, as well as synergized and induced long-term responses ex vivo in AML patient samples relapsed or refractory to azacitidine + venetoclax treatment. Together, our results indicate that pan-RAF inhibition, alone or in combination with BCL2 inhibition, is a promising treatment strategy for AML.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , raf Kinases/antagonists & inhibitors , Cell Line, Tumor , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/genetics
18.
Sci Rep ; 9(1): 11796, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409822

ABSTRACT

The patho-mechanism of somatic driver mutations in cancer usually involves transcription, but the proportion of mutations and wild-type alleles transcribed from DNA to RNA is largely unknown. We systematically compared the variant allele frequencies of recurrently mutated genes in DNA and RNA sequencing data of 246 acute myeloid leukaemia (AML) patients. We observed that 95% of all detected variants were transcribed while the rest were not detectable in RNA sequencing with a minimum read-depth cut-off (10x). Our analysis focusing on 11 genes harbouring recurring mutations demonstrated allelic imbalance (AI) in most patients. GATA2, RUNX1, TET2, SRSF2, IDH2, PTPN11, WT1, NPM1 and CEBPA showed significant AIs. While the effect size was small in general, GATA2 exhibited the largest allelic imbalance. By pooling heterogeneous data from three independent AML cohorts with paired DNA and RNA sequencing (N = 253), we could validate the preferential transcription of GATA2-mutated alleles. Differential expression analysis of the genes with significant AI showed no significant differential gene and isoform expression for the mutated genes, between mutated and wild-type patients. In conclusion, our analyses identified AI in nine out of eleven recurrently mutated genes. AI might be a common phenomenon in AML which potentially contributes to leukaemogenesis.


Subject(s)
Allelic Imbalance/genetics , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Neoplasm Recurrence, Local/genetics , Female , Gene Expression Regulation, Leukemic/genetics , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mutation , Neoplasm Recurrence, Local/pathology , Nucleophosmin , Prognosis
20.
J Cell Physiol ; 234(9): 16295-16303, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30770553

ABSTRACT

Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...