Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 262: 113965, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640578

ABSTRACT

Nanostructured materials continue to find applications in various electronic and sensing devices, chromatography, separations, drug delivery, renewable energy, and catalysis. While major advancements on the synthesis and characterization of these materials have already been made, getting information about their structures at sub-nanometer resolution remains challenging. It is also unfortunate to find that many emerging or already available powerful analytical methods take time to be fully adopted for characterization of various nanomaterials. The scanning low energy electron microscopy (SLEEM) is a good example to this. In this report, we show how clearer structural and surface information at nanoscale can be obtained by SLEEM, coupled with deep learning. The method is demonstrated using Au nanoparticles-loaded mesoporous silica as a model system. Moreover, unlike conventional scanning electron microscopy (SEM), SLEEM does not require the samples to be coated with conductive films for analysis; thus, not only it is convenient to use but it also does not give artifacts. The results further reveal that SLEEM and deep learning can serve as great tools to analyze materials at nanoscale well. The biggest advantage of the presented method is its availability, as most modern SEMs are able to operate at low energies and deep learning methods are already being widely used in many fields.

3.
Nanomaterials (Basel) ; 11(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34578750

ABSTRACT

The detailed examination of electron scattering in solids is of crucial importance for the theory of solid-state physics, as well as for the development and diagnostics of novel materials, particularly those for micro- and nanoelectronics. Among others, an important parameter of electron scattering is the inelastic mean free path (IMFP) of electrons both in bulk materials and in thin films, including 2D crystals. The amount of IMFP data available is still not sufficient, especially for very slow electrons and for 2D crystals. This situation motivated the present study, which summarizes pilot experiments for graphene on a new device intended to acquire electron energy-loss spectra (EELS) for low landing energies. Thanks to its unique properties, such as electrical conductivity and transparency, graphene is an ideal candidate for study at very low energies in the transmission mode of an electron microscope. The EELS are acquired by means of the very low-energy electron microspectroscopy of 2D crystals, using a dedicated ultra-high vacuum scanning low-energy electron microscope equipped with a time-of-flight (ToF) velocity analyzer. In order to verify our pilot results, we also simulate the EELS by means of density functional theory (DFT) and the many-body perturbation theory. Additional DFT calculations, providing both the total density of states and the band structure, illustrate the graphene loss features. We utilize the experimental EELS data to derive IMFP values using the so-called log-ratio method.

4.
Nanomaterials (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35010021

ABSTRACT

The segmented semiconductor detectors for transmitted electrons in ultrahigh resolution scanning electron microscopes allow observing samples in various imaging modes. Typically, two standard modes of objective lens, with and without a magnetic field, differ by their resolution. If the beam deceleration mode is selected, then an electrostatic field around the sample is added. The trajectories of transmitted electrons are influenced by the fields below the sample. The goal of this paper is a quantification of measured images and theoretical study of the capability of the detector to collect signal electrons by its individual segments. Comparison of measured and ray-traced simulated data were difficult in the past. This motivated us to present a new method that enables better comparison of the two datasets at the cost of additional measurements, so-called calibration curves. Furthermore, we also analyze the measurements acquired using 2D pixel array detector (PAD) that provide a more detailed angular profile. We demonstrate that the radial profiles of STEM and/or 2D-PAD data are sensitive to material composition. Moreover, scattering processes are affected by thickness of the sample as well. Hence, comparing the two experimental and simulation data can help to estimate composition or the thickness of the sample.

5.
Adv Sci (Weinh) ; 6(19): 1900719, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31592411

ABSTRACT

Carbon and carbon/metal systems with a multitude of functionalities are ubiquitous in new technologies but understanding on the nanoscale remains elusive due to their affinity for interaction with their environment and limitations in available characterization techniques. This paper introduces a spectroscopic technique and demonstrates its capacity to reveal chemical variations of carbon. The effectiveness of this approach is validated experimentally through spatially averaging spectroscopic techniques and using Monte Carlo modeling. Characteristic spectra shapes and peak positions for varying contributions of sp2-like or sp3-like bond types and amorphous hydrogenated carbon are reported under circumstances which might be observed on highly oriented pyrolytic graphite (HOPG) surfaces as a result of air or electron beam exposure. The spectral features identified above are then used to identify the different forms of carbon present within the metallic films deposited from reactive organometallic inks. While spectra for metals is obtained in dedicated surface science instrumentation, the complex relations between carbon and metal species is only revealed by secondary electron (SE) spectroscopy and SE hyperspectral imaging obtained in a state-of-the-art scanning electron microscope (SEM). This work reveals the inhomogeneous incorporation of carbon on the nanoscale but also uncovers a link between local orientation of metallic components and carbon form.

6.
Materials (Basel) ; 12(14)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31330942

ABSTRACT

Scanning electron microscopes come equipped with different types of detectors for the collection of signal electrons emitted from samples. In-lens detection systems mostly consist of several auxiliary electrodes that help electrons to travel in a direction towards the detector. This paper aims to show that a through-the-lens detector in a commercial electron microscope Magellan 400 FEG can, under specific conditions, work as an energy band-pass filter of secondary electrons that are excited by the primary beam electrons. The band-pass filter properties verify extensive simulations of secondary and backscattered electrons in a precision 3D model of a microscope. A unique test sample demonstrates the effects of the band-pass filter on final image and contrast with chromium and silver stripes on a silicon substrate, manufactured by a combination of e-beam lithography, wet etching, and lift-off technique. The ray tracing of signal electrons in a detector model predicate that the through-the-lens detector works as a band-pass filter of the secondary electrons with an energy window of about 3 eV. By moving the energy window along the secondary electron energy spectrum curve of the analyzed material, we select the energy of the secondary electrons to be detected. Energy filtration brings a change in contrast in the image as well as displaying details that are not otherwise visible.

7.
Scanning ; 28(5): 245-56, 2006.
Article in English | MEDLINE | ID: mdl-17063762

ABSTRACT

Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

SELECTION OF CITATIONS
SEARCH DETAIL
...