Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745399

ABSTRACT

BACKGROUND AND PURPOSE: Chitinase-3-like 1 (CHI3L1) causes skin inflammation in the progression of atopic dermatitis. We investigated if anti-CHI3L1 antibody could prevent the development of atopic dermatitis and its mechanisms of action. EXPERIMENTAL APPROACH: The effect of CHI3L1 antibody on phthalic anhydride-induced atopic dermatitis animal model and in vitro reconstructed human skin (RHS) model were investigated. Expression and release of atopic dermatitis-related cytokines were determined using an enzyme-linked immunosorbent assay, and RT-qPCR, STAT3 and CXCL8 signalling were measured by western blotting. KEY RESULTS: Anti-CHI3L1 antibody suppressed phthalic anhydride-induced epidermal thickening, clinical score, IgE level and infiltration of inflammatory cells, and reduced phthalic anhydride-induced inflammatory cytokines concentration. In addition, CHI3L1 antibody treatment inhibited the expression of STAT3 activity in phthalic anhydride-treated skin. It was also confirmed that CHI3L1 antibody treatment alleviated atopic dermatitis-related inflammation in the RHS model. The inhibitory effects of CHI3L1 antibody was similar or more effective compared with that of the IL-4 antibody. We further found that CHI3L1 is associated with CXCL8 by protein-association network analysis. siRNA of CHI3L1 blocked the mRNA levels of CHI3L1, IL-1ß, IL-4, CXCL8, TSLP, and the expression of CHI3L1 and p-STAT, and the level of CXCL8, whereas recombinant level of CXCL8 was elevated. Moreover, siRNA of STAT3 reduced the mRNA level of these cytokines. CHI3L1 and p-STAT3 expression correlated with the reduced CXCL8 level in the RHS in vitro model. CONCLUSION AND IMPLICATIONS: Our data demonstrated that CHI3L1 antibody could be a promising effective therapeutic drug for atopic dermatitis.

2.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791588

ABSTRACT

Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aß infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aß-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aß infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.


Subject(s)
Amyloid beta-Peptides , Chitinase-3-Like Protein 1 , Cognitive Dysfunction , MAP Kinase Signaling System , Mice, Knockout , Neuroinflammatory Diseases , Animals , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/metabolism , Mice , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Male , MAP Kinase Signaling System/drug effects , C-Reactive Protein/metabolism , Female , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Down-Regulation , Disease Models, Animal , Aged , Mice, Inbred C57BL
3.
Fish Shellfish Immunol ; 47(1): 141-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26342403

ABSTRACT

Chinese shrimp Fennerpenaeus chinensis (mean length 1.86 ± 0.15 cm, and weight 137.4 ± 12.7 mg) were reared in the different concentrations of bio-floc (control, 60, 80, 100, 120, and 140%) for 90 days. The growth rate was significantly increased over 100% bio-floc concentrations. In the immunological parameters, the gene expression of proPO and lysozyme was considerably increased over 120% bio-floc concentrations. The gene expression of SP was notably elevated at 140% bio-floc concentration. In the antioxidant enzymes, the activity of SOD was considerably decreased over 80% bio-floc concentrations. A notable decline in the activity of CAT was observed over 120% bio-floc concentrations. The results indicate that rearing of Chinese shrimp in bio-floc system can induce the increase of growth performance, enhancement of immune responses, and reduction of oxidative stress.


Subject(s)
Aquaculture/methods , Immunity, Innate , Penaeidae/growth & development , Penaeidae/immunology , Probiotics/pharmacology , Animal Feed/analysis , Animals , Antioxidants/metabolism , Diet , Oxidative Stress , Penaeidae/microbiology , Probiotics/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...