Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32887283

ABSTRACT

Ammonia (NH3) is an important precursor for particulate secondary aerosol formation. This study was conducted to evaluate the applicability of a passive sampler (PAS) for estimating the NH3 emission from chemical fertilizer application (85 kg-N·ha-1) at field scale and to compare the results with a chamber system for the calculation of NH3 emission flux at lab scale. The application of chemical fertilizer increased the ambient NH3 concentration from 7.11 to 16.87 µg·m-3. Also, the ambient NH3 concentration measured by the PAS was found to be highly influenced by not only the chemical fertilizer application but also the weather (temperature and rainfall). Wind rose diagram data can be useful for understanding the distribution of ambient NH3 concentration. In the case of a chamber with few environmental variables, NH3 was emitted very quickly in the early stages and gradually decreased, whereas it was delayed at intervals of about one week at the site. It was found that daily temperature range, atmospheric disturbance by wind and rainfall, changes in soil moisture, and the presence of a flooded water table were the main influencing factors. The PAS data and the chamber system data were observed to have significant differences in spatial-temporal scale. In order to reduce the gap, it seems to be necessary to further develop a chamber system, in order to improve the precision of field analysis and to strengthen the connection between experimental results.


Subject(s)
Air Pollutants , Fertilizers , Agriculture , Air Pollutants/analysis , Ammonia/analysis , Fertilizers/analysis , Nitrogen/analysis , Soil , Volatilization
2.
J Environ Manage ; 146: 124-130, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25242543

ABSTRACT

Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology.


Subject(s)
Coffee/chemistry , Metals, Heavy/chemistry , Soil Pollutants/chemistry , Water Pollutants/chemistry , Adsorption , Charcoal/chemistry , Environmental Restoration and Remediation , Humans , Soil/chemistry , Waste Management
3.
J Environ Manage ; 139: 15-21, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24681360

ABSTRACT

A greenhouse experiment was conducted to evaluate the effect of four different amendments, bone mill, bottom ash, furnace slag, and red mud, as immobilizing agents and the plant species Miscanthus sinensis and Pteridium aquilinum in aided phytostabilization of Pb/Zn mine tailings. The effects of amendments and plants on the availability and mobility of heavy metals were evaluated using single extraction, sequential extraction, pore-water analysis, and determination of heavy metal concentrations in plants. The application of Fe-rich amendments significantly reduced the amount of soluble and extractable heavy metals in the tailings (p < 0.05). Furnace slag and M. sinensis reduced CaCl2-extractable heavy metals by 56-91%, red mud and P. aquilinum treatment was the most effective at decreasing bioaccessible Pb, reducing it to 34% of the total Pb. Compared to control, water soluble Cd, Cu, Pb, and Zn were reduced by 99, 99, 98, and 99%, respectively, in the red mud and P. aquilinum tailings. M. sinensis accumulated heavy metals mainly in the root, and had lower translocation factors compared with P. aquilinum. The results of this study suggest that M. sinensis can be used in aided phytostabilization for these types of mine tailings and Fe-rich amendments are effective for the in situ immobilization of metals.


Subject(s)
Industrial Waste , Metals, Heavy/chemistry , Poaceae/metabolism , Pteridium/metabolism , Soil Pollutants/chemistry , Biodegradation, Environmental , Metals, Heavy/analysis , Metals, Heavy/metabolism , Mining , Plant Roots/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Waste Management/methods
4.
Environ Geochem Health ; 34(3): 337-48, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21850414

ABSTRACT

The objectives of this study were to elucidate the effects of soil amendments [Ferrous sulfate (Fe(II)), red mud, Fe(II) with calcium carbonate (Fe(II)/L) or red mud (RM/F), zero-valent iron (ZVI), furnace slag, spent mushroom waste and by-product fertilizer] on arsenic (As) stabilization and to establish relationships between soil properties, As fractions and soil enzyme activities in amended As-rich gold mine tailings (Kangwon and Keumkey). Following the application of amendments, a sequential extraction test and evaluation of the soil enzyme activities (dehydrogenase and ß-glucosidase) were conducted. Weak and negative relationships were observed between water-soluble As fractions (As(WS)) and oxalate extractable iron, while As(WS) was mainly affected by dissolved organic carbon in alkaline tailings sample (Kangwon) and by soil pH in acidic tailings sample (Keumkey). The soil enzyme activities in both tailings were mainly associated with As(WS). Principal component and multiple regression analyses confirmed that As(WS) was the most important factor to soil enzyme activities. However, with some of the treatments in Keumkey, contrary results were observed due to increased water-soluble heavy metals and carbon sources. In conclusion, our results suggest that to simultaneously achieve decreased As(WS) and increased soil enzyme activities, Kangwon tailings should be amended with Fe(II), Fe(II)/L or ZVI, while only ZVI or RM/F would be suitable for Keumkey tailings. Despite the limitations of specific soil samples, this result can be expected to provide useful information on developing a successful remediation strategy of As-contaminated soils.


Subject(s)
Arsenic/chemistry , Mining , Soil Microbiology , Soil Pollutants/chemistry , Soil/chemistry , Aluminum/chemistry , Arsenic/analysis , Gold/chemistry , Iron/chemistry , Organic Chemicals/chemistry , Oxidoreductases/metabolism , Principal Component Analysis , Regression Analysis , Republic of Korea , Soil Pollutants/analysis , beta-Glucosidase/metabolism
5.
J Hazard Mater ; 192(1): 381-7, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21632176

ABSTRACT

The effects of iron (Fe) and spent mushroom substrate (SMS) arsenic (As) phytotoxicity towards lettuce in artificial soils were investigated to separate the adverse soil parameters relating to As toxicity using a response surface methodology. SMS induced the root elongation of lettuce in both control and As-treated soils. However, in phytotoxicity test using a median effective concentration (EC(50)) of As, Fe and the interaction between both parameters (Fe*SMS) significantly affected EC(50), which explained 71% and 23% of the response, respectively. The refined model was as follows: EC(50) of As (mgkg(-1))=10.99+60.03 × Fe-10.50 × Fe*SMS. The results confirmed that the soil parameters relating to the As mobility in soils were important factors affecting its toxicity. In conclusion, Fe significantly reduced the As phytotoxicity. However, although SMS enhanced the root elongation, SMS in As-treated soils decreased EC(50) of As on the root growth via its interaction with Fe. Despite the limitations of the artificial soils and range of parameters studied, the application of this statistical tool can be considered a powerful and efficient technique for interpretation and prediction of the complicated results caused by the interactions between many factors within the soil environments.


Subject(s)
Agaricales/chemistry , Arsenic/toxicity , Iron/pharmacology , Lactuca/drug effects , Plant Roots/growth & development , Surface Properties
6.
J Hazard Mater ; 188(1-3): 44-51, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21333442

ABSTRACT

We evaluated the effects of five different kinds of amendments on heavy metals stabilization. The five amendments were: zero valent iron, limestone, acid mine drainage treatment sludge, bone mill, and bottom ash. To determine bioavailability of the heavy metals, different chemical extraction procedures were used such as, extraction with (Ca(NO(3))(2), DTPA; toxic characteristic leaching procedure (TCLP), physiologically based extraction test (PBET) that simulates gastric juice, and sequential extraction test. Bioavailability was also determined by measuring uptake of the heavy metals by lettuce (Lactuca sativa L.) and earthworms (Eisenia fetida). In addition, dehydrogenase activity was measured to determine microbial activity in the soil with the different amendments. The addition of amendments, especially limestone and bottom ash, resulted in a significant reduction in extractable metal contents. Biological assays using lettuce, earthworm, and enzyme activity were found as appropriate indicators of available metal fraction after in situ stabilization of heavy metals. In conclusion, TCLP and sequential extraction test appear to be promising surrogate measure of metal bioavailability in soils for several environment endpoints.


Subject(s)
Metals, Heavy/chemistry , Metals, Heavy/pharmacokinetics , Animals , Biological Availability , Lactuca/metabolism , Oligochaeta/metabolism , Trace Elements/chemistry , Trace Elements/pharmacokinetics
7.
Chemosphere ; 75(4): 505-12, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19155041

ABSTRACT

We investigated the arsenate tolerance mechanisms of Oenothera odorata by comparing two populations [i.e., one population from the mine site (MP) and the other population from an uncontaminated site (UP)] via the exposure of hydroponic solution containing arsenate (i.e., 0-50 microM). The MP plants were significantly more tolerant to arsenate than UP plants. The UP plants accumulated more As in their shoots and roots than did the MP plants. The UP plants translocated up to 21 microg g(-1) of As into shoots, whereas MP plants translocated less As (up to 4.5 microg g(-1)) to shoots over all treatments. The results of lipid peroxidation indicated that MP plants were less damaged by oxidative stress than were UP plants. Phytochelatin (PC) content correlated linearly with root As concentration in the MP (i.e., [PCs](root)=1.69x[As](root), r(2)=0.945) and UP (i.e., [PCs](root)=0.89x[As](root), r(2)=0.979) plants. This relationship means that increased PC to As ratio may be associated with increased tolerance. Our results suggest that PC induction in roots plays a critical role in As tolerance of O. odorata.


Subject(s)
Arsenates/toxicity , Onagraceae/drug effects , Onagraceae/metabolism , Phytochelatins/metabolism , Soil Pollutants/toxicity , Adaptation, Physiological , Lipid Peroxidation , Mining , Peroxidases/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...