Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 725: 138233, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32278174

ABSTRACT

In the Netherlands it is common to nourish the coastline with sand from the seabed. Foredunes are replenished with sand from the beach and can be transported further into the dune area. We investigated whether nourishment material alters the phosphorus (P) content of dune soil and the nitrogen (N):P ratio of dune vegetation in two areas: a mega sand nourishment with fixed foredunes (SE) and a traditional sand nourishment with dynamic foredunes (NWC). Four zones were considered: beach (zone 1), frontal foredunes (zone 2), foredunes crest (zone 3) and inner dunes (zone 4). We estimated the characteristics of fine (< 250-µm) and coarse (250-2000 µm) sand. Total P, P speciation and available P of SE and NWC were similar until zone 4. Zone 1-3 consisted mainly of coarse sand, whereas the sand in zone 4 was finer with higher amounts at NWC. Iron (Fe) bound P was comparable for fine and coarse sand in zone 1-3, but high contents were present in zone 4. In zone 1-3, calcium (Ca) bound P was mainly found in the fine fraction, which was abundant in the coarse fraction of zone 4. After a period of 4 years, the effect of dynamic dunes on P fractions and dune plant species was not apparent yet, although inblowing sand mainly consisted of fine sand with high contents of Ca-bound P. This may change over time, especially in dynamic dunes with higher eolian activity of fine sand. Consequently, pH buffering of the soil may increase because of a higher Ca­carbonate content, which leads to decreased solubility of Ca-bound P and low P availability for the vegetation. Both low P availability and high buffering capacity are known environmental factors that facilitate endangered dune plant species.

2.
PLoS One ; 10(12): e0144006, 2015.
Article in English | MEDLINE | ID: mdl-26637121

ABSTRACT

In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens ('rich fens'). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3- concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3(-) and NH4(+) dynamics showed no considerable changes either. In conclusion, short-term summer inundation with base-rich and nutrient-poor surface water is considered beneficial in the management of non-floating rich fens, and much more effective than winter inundation.


Subject(s)
Crop Production , Models, Biological , Sphagnopsida/chemistry , Sphagnopsida/growth & development
3.
Water Air Soil Pollut ; 226(6): 201, 2015.
Article in English | MEDLINE | ID: mdl-26028791

ABSTRACT

The Rio Santiago in the Cordillera Negra of Peru is severely contaminated by acid mine drainage in its headwaters. In a strongly acid stream, at about 3800 m above sea level (masl), microterraces were found with terrace walls built up of dead moss, with encrustations and interstitial fine, creamy sediment. The stream water was turbid due to the presence of similar suspended sediment, which also occurred as a thin basal layer in inter-rim basins. The moss was identified as the rare bryophyte Anomobryum prostratum (Müll. Hal.) Besch. Chemical and mineralogical analyses show that green, living parts of the moss are gradually coated by Al/Fe (hydr)oxides, inducing their senescence and death. The necromass is covered by creamy crusts through precipitation of schwertmannite-type material from the stream water and simultaneous 'capture' of fine sediment. The latter consists of a mixture of precipitate and fine detrital primary minerals. These processes are held responsible for the formation of the microterraces, which regarding their composition and environment seem to be unique. Remarkable is the high As content of the creamy crusts and sediment, attributed to strong sorption of As, whereas its solute concentration is relatively low. This calls for more attention to suspended fine sediment in the assessment of environmental risks of stream water use. Lastly, the results raise serious doubts about the use of aquatic bryophytes as bioindicator for chemical pollution in acid mine drainage-polluted streams.

4.
Biol Rev Camb Philos Soc ; 90(1): 182-203, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24698312

ABSTRACT

Fens represent a large array of ecosystem services, including the highest biodiversity found among wetlands, hydrological services, water purification and carbon sequestration. Land-use change and drainage has severely damaged or annihilated these services in many parts of North America and Europe; restoration plans are urgently needed at the landscape level. We review the major constraints on the restoration of rich fens and fen water bodies in agricultural areas in Europe and disturbed landscapes in North America: (i) habitat quality problems: drought, eutrophication, acidification, and toxicity, and (ii) recolonization problems: species pools, ecosystem fragmentation and connectivity, genetic variability, and invasive species; and here provide possible solutions. We discuss both positive and negative consequences of restoration measures, and their causes. The restoration of wetland ecosystem functioning and services has, for a long time, been based on a trial-and-error approach. By presenting research and practice on the restoration of rich fen ecosystems within agricultural areas, we demonstrate the importance of biogeochemical and ecological knowledge at different spatial scales for the management and restoration of biodiversity, water quality, carbon sequestration and other ecosystem services, especially in a changing climate. We define target processes that enable scientists, nature managers, water managers and policy makers to choose between different measures and to predict restoration prospects for different types of deteriorated fens and their starting conditions.


Subject(s)
Environmental Restoration and Remediation/methods , Wetlands , Biodiversity , Europe , North America
5.
Sci Total Environ ; 481: 129-41, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24594742

ABSTRACT

The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland vegetation requires larger areas, as long as eutrophication has not been seriously tackled.


Subject(s)
Agriculture/methods , Biodiversity , Ecosystem , Fertilizers , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/prevention & control , Wetlands , Netherlands , Water Pollution, Chemical/statistics & numerical data
6.
Environ Pollut ; 157(3): 792-800, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19095336

ABSTRACT

Coastal dunes around the Baltic Sea have received small amounts of atmospheric nitrogen and are rather pristine ecosystems in this respect. In 19 investigated dune sites the atmospheric wet nitrogen deposition is 3-8kg Nha(-1)yr(-1). The nitrogen content of Cladonia portentosa appeared to be a suitable biomonitor of these low to medium deposition levels. Comparison with EMEP-deposition data showed that Cladonia reflects the deposition history of the last 3-6 years. With increasing nitrogen load, we observed a shift from lichen-rich short grass vegetation towards species-poor vegetation dominated by the tall graminoid Carex arenaria. Plant species richness per field site, however, does not decrease directly with these low to medium N deposition loads, but with change in vegetation composition. Critical loads for acidic, dry coastal dunes might be lower than previously thought, in the range of 4-6kg Nha(-1)yr(-1) wet deposition.


Subject(s)
Air Pollutants/toxicity , Ecosystem , Environmental Monitoring/methods , Nitrogen/toxicity , Biodiversity , Conservation of Natural Resources , Lichens/growth & development , Netherlands , Poaceae/growth & development , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...