Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 9(1): 33-41, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36455156

ABSTRACT

Sialidases or neuraminidases are sialic-acid-cleaving enzymes that are expressed by a broad spectrum of organisms, including pathogens. In nature, sialic acids are monosaccharides with diverse structural variations, but the lack of novel probes has made it difficult to determine how sialic acid modifications impact the recognition by sialidases. Here, we used a chemoenzymatic synthon strategy to generate a set of α2-3- and α2-6-linked sialoside probes that contain 7-N-acetyl or 7,9-di-N-acetyl sialic acid as structure mimics for those containing the less stable naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl modifications. These probes were used to compare the substrate specificity of several sialidases from different origins. Our results show that 7-N-acetyl sialic acid was readily cleaved by neuraminidases from H1N1 and H3N2 influenza A viruses, but not by sialidases of human or bacterial origin, thereby indicating that the influenza enzymes possess a distinctive and more promiscuous substrate binding pocket.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Humans , N-Acetylneuraminic Acid/metabolism , Influenza A virus/metabolism , Neuraminidase , Influenza A Virus, H3N2 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Sialic Acids/chemistry , Sialic Acids/metabolism
2.
ChemCatChem ; 14(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35784007

ABSTRACT

A human sialyltransferase ST3GAL II (hST3GAL II) was successfully expressed in Escherichia coli as an active soluble fusion protein with an N-terminal maltose-binding protein (MBP) and a C-terminal hexa-histidine tag. It was used as an efficient catalyst in a one-pot multienzyme (OPME) sialylation system for high-yield production of the glycans of ganglioside GM1b and highly sialylated brain gangliosides GD1a and GT1b. Further sialylation of GM1b and GD1a glycans using a bacterial α2-8-sialyltransferase in another OPME sialylation reaction led to the formation of the glycans of GD1c and brain ganglioside GT1a, respectively. The lower reverse glycosylation activity of the recombinant hST3GAL II compared to its bacterial sialyltransferase counterpart simplifies the handling of enzymatic synthetic reactions and has an advantage for future use in automated chemoenzymatic synthetic processes.

3.
J Org Chem ; 86(21): 14381-14397, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34636559

ABSTRACT

A novel chemoenzymatic synthon strategy has been developed to construct a comprehensive library of α2-3- and α2-6-linked sialosides containing 7-N- or 7,9-di-N-acetyl sialic acid, the stable analogue of naturally occurring 7-O-acetyl- or 7,9-di-O-acetyl-sialic acid. Diazido and triazido-mannose derivatives that were readily synthesized chemically from inexpensive galactose were shown to be effective chemoenzymatic synthons. Together with bacterial sialoside biosynthetic enzymes with remarkable substrate promiscuity, they were successfully used in one-pot multienzyme (OPME) sialylation systems for highly efficient synthesis of sialosides containing multiple azido groups. Conversion of the azido groups to N-acetyl groups generated the desired sialosides. The hydrophobic and UV-detectable benzyloxycarbonyl (Cbz) group introduced in the synthetic acceptors of sialyltransferases was used as a removable protecting group for the propylamine aglycon of the target sialosides. The resulting N-acetyl sialosides were novel stable probes for sialic acid-binding proteins such as plant lectin MAL II, which bond strongly to sialyl T antigens with or without an N-acetyl at C7 or at both C7 and C9 in the sialic acid.


Subject(s)
N-Acetylneuraminic Acid , Sialic Acids , Carrier Proteins , Mannose , Sialyltransferases/metabolism
4.
Front Immunol ; 10: 2004, 2019.
Article in English | MEDLINE | ID: mdl-31555264

ABSTRACT

Sialic acids constitute a family of negatively charged structurally diverse monosaccharides that are commonly presented on the termini of glycans in higher animals and some microorganisms. In addition to N-acetylneuraminic acid (Neu5Ac), N-glycolyl neuraminic acid (Neu5Gc) is among the most common sialic acid forms in nature. Nevertheless, unlike most animals, human cells loss the ability to synthesize Neu5Gc although Neu5Gc-containing glycoconjugates have been found on human cancer cells and in various human tissues due to dietary incorporation of Neu5Gc. Some pathogenic bacteria also produce Neu5Ac and the corresponding glycoconjugates but Neu5Gc-producing bacteria have yet to be found. In addition to Neu5Gc, more than 20 Neu5Gc derivatives have been found in non-human vertebrates. To explore the biological roles of Neu5Gc and its naturally occurring derivatives as well as the corresponding glycans and glycoconjugates, various chemical and enzymatic synthetic methods have been developed to obtain a vast array of glycosides containing Neu5Gc and/or its derivatives. Here we provide an overview on various synthetic methods that have been developed. Among these, the application of highly efficient one-pot multienzyme (OPME) sialylation systems in synthesizing compounds containing Neu5Gc and derivatives has been proven as a powerful strategy.


Subject(s)
Glycosides/chemical synthesis , Neuraminic Acids/chemical synthesis , Chemistry Techniques, Synthetic , Molecular Structure , Oligosaccharides/chemistry , Phosphites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...