Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474308

ABSTRACT

Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides midges that infects ruminants. As global temperatures increase and geographical ranges of midges expand, there is increased potential for BTV outbreaks from incursions of novel serotypes into endemic regions. However, an understanding of the effect of temperature on reassortment is lacking. The objectives of this study were to compare how temperature affected Culicoides survival, virogenesis, and reassortment in Culicoides sonorensis coinfected with two BTV serotypes. Midges were fed blood meals containing BTV-10, BTV-17, or BTV serotype 10 and 17 and maintained at 20 °C, 25 °C, or 30 °C. Midge survival was assessed, and pools of midges were collected every other day to evaluate virogenesis of BTV via qRT-PCR. Additional pools of coinfected midges were collected for BTV plaque isolation. The genotypes of plaques were determined using next-generation sequencing. Warmer temperatures impacted traits related to vector competence in offsetting ways: BTV replicated faster in midges at warmer temperatures, but midges did not survive as long. Overall, plaques with BTV-17 genotype dominated, but BTV-10 was detected in some plaques, suggesting parental strain fitness may play a role in reassortment outcomes. Temperature adds an important dimension to host-pathogen interactions with implications for transmission and evolution.


Subject(s)
Bluetongue virus , Ceratopogonidae , Chironomidae , Coinfection , Animals , Temperature , Bluetongue virus/genetics , Serogroup
2.
Viruses ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38400016

ABSTRACT

Bluetongue virus (BTV) is a segmented, double-stranded RNA orbivirus listed by the World Organization for Animal Health and transmitted by Culicoides biting midges. Segmented viruses can reassort, which facilitates rapid and important genotypic changes. Our study evaluated reassortment in Culicoides sonorensis midges coinfected with different ratios of BTV-10 and BTV-17. Midges were fed blood containing BTV-10, BTV-17, or a combination of both serotypes at 90:10, 75:25, 50:50, 25:75, or 10:90 ratios. Midges were collected every other day and tested for infection using pan BTV and cox1 (housekeeping gene) qRT-PCR. A curve was fit to the ∆Ct values (pan BTV Ct-cox1 Ct) for each experimental group. On day 10, the midges were processed for BTV plaque isolation. Genotypes of the plaques were determined by next-generation sequencing. Pairwise comparison of ∆Ct curves demonstrated no differences in viral RNA levels between coinfected treatment groups. Plaque genotyping indicated that most plaques fully aligned with one of the parental strains; however, reassortants were detected, and in the 75:25 pool, most plaques were reassortant. Reassortant prevalence may be maximized upon the occurrence of reassortant genotypes that can outcompete the parental genotypes. BTV reassortment and resulting biological consequences are important elements to understanding orbivirus emergence and evolution.


Subject(s)
Bluetongue virus , Ceratopogonidae , Coinfection , Animals , Serogroup , Bluetongue virus/genetics , Coinfection/veterinary , Genotype
3.
Vet Clin Pathol ; 52(4): 654-660, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37985467

ABSTRACT

BACKGROUND: Creatine kinase (CK) exists as three isoenzymes (CK-MM, CK-MB, and CK-BB) that are predominantly expressed in specific tissues and can be detected in both the serum and cerebrospinal fluid (CSF). CSF CK has been relatively unstudied in veterinary medicine, although studies in human medicine have demonstrated that changes in total CSF CK activity can indicate neurologic abnormalities. OBJECTIVES: The purpose of this study was to establish reference intervals for CK and its three major isoenzymes in the serum and CSF of clinically healthy dogs. By establishing a definitive reference interval for this enzyme in healthy canines, the diagnostic use and possible significance of CK in clinical disease can be studied. METHODS: Serum and/or CSF were collected from healthy dogs. Total CK activity was measured spectrophotometrically, and isoenzyme distributions were determined using the QuickGel CK Vis Isoenzyme Kit and a densitometric scanner. Total CK and CK isoenzyme activities were determined within 8 h of collection. RESULTS: The median serum total CK in healthy canines was 159.0 U/L (range: 53.0-539.0 U/L), while the median CSF total CK was 3.7 U/L (range: 2.0-84.0 U/L). CK-BB and CK-MM were approximately equal in the serum, while CK-MM was the predominant isoenzyme in the CSF. CONCLUSIONS: Knowledge of the normal distribution and concentration of CK in canine serum and CSF will set the foundation for future studies of canine CK as a potentially clinically useful biomarker.


Subject(s)
Creatine Kinase , Isoenzymes , Dogs , Humans , Animals
4.
Pathogens ; 12(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37887723

ABSTRACT

Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides biting midges. Infection of domestic and wild ruminants with BTV can result in a devastating disease and significant economic losses. As a virus with a segmented genome, reassortment among the BTV serotypes that have co-infected a host may increase genetic diversity, which can alter BTV transmission dynamics and generate epizootic events. The objective of this study was to determine the extent of dissemination and characterize the tropism of BTV serotypes 10 and 17 in co-infected Culicoides sonorensis. Midges were exposed to both BTV serotypes via blood meal and processed for histologic slides 10 days after infection. An in situ hybridization approach was employed using the RNAscope platform to detect the nucleic acid segment 2 of both serotypes. Observations of the mosaic patterns in which serotypes did not often overlap suggest that co-infection at the cellular level may not be abundant with these two serotypes in C. sonorensis. This could be a consequence of superinfection exclusion. Understanding BTV co-infection and its biological consequences will add an important dimension to the modeling of viral evolution and emergence.

5.
Annu Rev Anim Biosci ; 10: 303-324, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35167317

ABSTRACT

Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.


Subject(s)
Bluetongue virus , Bluetongue , Sheep Diseases , Animals , Bluetongue virus/genetics , Genomics , Insect Vectors/genetics , Ruminants , Sheep
6.
Viruses ; 13(6)2021 05 28.
Article in English | MEDLINE | ID: mdl-34071483

ABSTRACT

Bluetongue virus (BTV) is a segmented RNA virus transmitted by Culicoides midges. Climatic factors, animal movement, vector species, and viral mutation and reassortment may all play a role in the occurrence of BTV outbreaks among susceptible ruminants. We used two enzootic strains of BTV (BTV-2 and BTV-10) to explore the potential for Culicoides sonorensis, a key North American vector, to be infected with these viruses, and identify the impact of temperature variations on virogenesis during infection. While BTV-10 replicated readily in C. sonorensis following an infectious blood meal, BTV-2 was less likely to result in productive infection at biologically relevant exposure levels. Moreover, when C. sonorensis were co-exposed to both viruses, we did not detect reassortment between the two viruses, despite previous in vitro findings indicating that BTV-2 and BTV-10 are able to reassort successfully. These results highlight that numerous factors, including vector species and exposure dose, may impact the in vivo replication of varying BTV strains, and underscore the complexities of BTV ecology in North America.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Diptera/virology , Temperature , Animals , Cell Culture Techniques , Cell Line , Disease Susceptibility , Genotype , Insect Vectors/virology , Reassortant Viruses , Viral Plaque Assay , Virus Replication
7.
Microorganisms ; 9(2)2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33669284

ABSTRACT

Bluetongue virus (BTV) is an arthropod-borne pathogen that is associated with sometimes severe disease in both domestic and wild ruminants. Predominantly transmitted by Culicoides spp. biting midges, BTV is composed of a segmented, double-stranded RNA genome. Vector expansion and viral genetic changes, such as reassortment between BTV strains, have been implicated as potential drivers of ongoing BTV expansion into previously BTV-free regions. We used an in vitro system to investigate the extent and flexibility of reassortment that can occur between two BTV strains that are considered enzootic to the USA, BTV-2 and BTV-10. Whole genome sequencing (WGS) was coupled with plaque isolation and a novel, amplicon-based sequencing approach to quantitate the viral genetic diversity generated across multiple generations of in vitro propagation. We found that BTV-2 and BTV-10 were able to reassort across multiple segments, but that a preferred BTV-2 viral backbone emerged in later passages and that certain segments were more likely to be found in reassortant progeny. Our findings indicate that there may be preferred segment combinations that emerge during BTV reassortment. Moreover, our work demonstrates the usefulness of WGS and amplicon-based sequencing approaches to improve understanding of the dynamics of reassortment among segmented viruses such as BTV.

8.
Viruses ; 12(9)2020 09 18.
Article in English | MEDLINE | ID: mdl-32961886

ABSTRACT

Bluetongue virus (BTV) is an arbovirus that has been associated with dramatic epizootics in both wild and domestic ruminants in recent decades. As a segmented, double-stranded RNA virus, BTV can evolve via several mechanisms due to its genomic structure. However, the effect of BTV's alternating-host transmission cycle on the virus's genetic diversification remains poorly understood. Whole genome sequencing approaches offer a platform for investigating the effect of host-alternation across all ten segments of BTV's genome. To understand the role of alternating hosts in BTV's genetic diversification, a field isolate was passaged under three different conditions: (i) serial passages in Culicoides sonorensis cells, (ii) serial passages in bovine pulmonary artery endothelial cells, or (iii) alternating passages between insect and bovine cells. Aliquots of virus were sequenced, and single nucleotide variants were identified. Measures of viral population genetics were used to quantify the genetic diversification that occurred. Two consensus variants in segments 5 and 10 occurred in virus from all three conditions. While variants arose across all passages, measures of genetic diversity remained largely similar across cell culture conditions. Despite passage in a relaxed in vitro system, we found that this BTV isolate exhibited genetic stability across passages and conditions. Our findings underscore the valuable role that whole genome sequencing may play in improving understanding of viral evolution and highlight the genetic stability of BTV.


Subject(s)
Bluetongue virus/genetics , Bluetongue/transmission , Bluetongue/virology , Animals , Bluetongue virus/physiology , Cattle , Ceratopogonidae/virology , Endothelial Cells/virology , Genetic Variation , Peptide Hydrolases , Serial Passage , Viral Proteins/genetics , Virus Replication
9.
Front Vet Sci ; 7: 186, 2020.
Article in English | MEDLINE | ID: mdl-32426376

ABSTRACT

Bluetongue virus (BTV) is an arbovirus transmitted to domestic and wild ruminants by certain species of Culicoides midges. The disease resulting from infection with BTV is economically important and can influence international trade and movement of livestock, the economics of livestock production, and animal welfare. Recent changes in the epidemiology of Culicoides-transmitted viruses, notably the emergence of exotic BTV genotypes in Europe, have demonstrated the devastating economic consequences of BTV epizootics and the complex nature of transmission across host-vector landscapes. Incursions of novel BTV serotypes into historically enzootic countries or regions, including the southeastern United States (US), Israel, Australia, and South America, have also occurred, suggesting diverse pathways for the transmission of these viruses. The abundance of BTV strains and multiple reassortant viruses circulating in Europe and the US in recent years demonstrates considerable genetic diversity of BTV strains and implies a history of reassortment events within the respective regions. While a great deal of emphasis is rightly placed on understanding the epidemiology and emergence of BTV beyond its natural ecosystem, the ecological contexts in which BTV maintains an enzootic cycle may also be of great significance. This review focuses on describing our current knowledge of ecological factors driving BTV transmission in North America. Information presented in this review can help inform future studies that may elucidate factors that are relevant to longstanding and emerging challenges associated with prevention of this disease.

10.
J Vet Diagn Invest ; 31(1): 107-112, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30541417

ABSTRACT

In late summer 2017, we observed acute, fatal cases of bovine viral diarrhea in captive Rocky Mountain bighorn sheep ( Ovis canadensis canadensis) in Colorado following use of a contaminated modified-live bluetongue virus vaccine. Following vaccination, at least 14 of 28 (50%) vaccinated bighorn sheep developed hemorrhagic diarrhea, and 6 of 28 (21%) vaccinated bighorn sheep died. Autopsy findings were predominantly necroulcerative-to-necrohemorrhagic gastrointestinal lesions. Less frequent lesions included suffusive hemorrhages of serosal surfaces of abdominal viscera, and lymphoid necrosis in gut-associated lymphoid tissues. All of the 6 bighorn sheep that died were positive on real-time PCR (rtPCR) for bovine viral diarrhea virus (BVDV) in multiple tissues. Seroconversion to BVDV-1 and immunohistochemistry for BVDV in affected tissues confirmed rtPCR results. Next-generation sequencing confirmed a match between the infecting strain of BVDV-1b and the contaminated vaccine.


Subject(s)
Bluetongue virus/immunology , Bluetongue/prevention & control , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Diarrhea Viruses, Bovine Viral/isolation & purification , Vaccines, Attenuated/adverse effects , Viral Vaccines/adverse effects , Animals , Bovine Virus Diarrhea-Mucosal Disease/etiology , Cattle , Colorado , Diarrhea Viruses, Bovine Viral/genetics , Drug Contamination , Female , Male , Phylogeny , Sheep, Bighorn , Vaccination/adverse effects , Vaccination/veterinary
11.
Sci Rep ; 8(1): 8168, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802369

ABSTRACT

Anticoagulant rodenticides have been implicated as a potential inciting factor in the development of mange in wild felids, but a causative association between anticoagulant rodenticide exposure and immune suppression has not been established. Specific-pathogen-free domestic cats were exposed to brodifacoum over a 6-week period to determine whether chronic, low-level exposure altered the feline immune response. Cats were vaccinated with irrelevant antigens at different points during the course of the experiment to assess recall and direct immune responses. Measures of immune response included delayed-type hypersensitivity tests and cell proliferation assays. IgE and antigen-specific antibodies were quantified via ELISA assays, and cytokine induction following exposure to vaccine antigens was also analyzed. While cats had marked levels of brodifacoum present in blood during the study, no cats developed coagulopathies or hematologic abnormalities. Brodifacoum-exposed cats had transient, statistically significant decreases in the production of certain cytokines, but all other measures of immune function remained unaffected throughout the study period. This study indicates that cats may be more resistant to clinical effects of brodifacoum exposure than other species and suggests that the gross impacts of environmentally realistic brodifacoum exposure on humoral and cell-mediated immunity against foreign antigen exposures in domestic cats are minimal.


Subject(s)
4-Hydroxycoumarins/pharmacology , Immunity/drug effects , Rodenticides/pharmacology , Animals , Cats , Cytokines/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Health , Hypersensitivity, Delayed/immunology , Time Factors
12.
Vet Clin Pathol ; 47(2): 267-274, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29505118

ABSTRACT

BACKGROUND: Lactate dehydrogenase (LD) exists as 5 isoenzymes (LD-1 through LD-5) that are expressed throughout the body and can be detected in both serum and cerebrospinal fluid (CSF). LD and its isoenzymes have been relatively unstudied in veterinary medicine, although studies in human medicine have demonstrated that changes in total LD activity and atypical isoenzyme patterns can indicate disease processes, including neurologic abnormalities. OBJECTIVES: The purpose of this study was to establish RIs for LD and its isoenzymes in the serum and CSF of clinically healthy dogs. By establishing a definitive RI for this enzyme in healthy canines, further study of the clinical and diagnostic usefulness of LD can be undertaken. METHODS: Serum and atlantoaxial CSF were collected from clinically healthy dogs. Total LD activity was measured spectrophotometrically immediately after collection. Isoenzyme distributions were also determined within 8 hours of collection using the QuickGel LD Isoenzyme technique and a densitometric scanner. RESULTS: The median serum total LD in healthy canines was 69.0 U/L (n = 41; range: 21.0-217.0 U/L), while the median CSF total LD was 10.0 U/L (n = 40; range: 6.0-19.3 U/L). LD-5 is the predominant isoenzyme in canine serum (n = 40), contributing over half of the total enzyme activity. Conversely, in canine CSF (n = 42), LD-1 is the predominant isoenzyme, followed by LD-2 and LD-3. CONCLUSIONS: Knowledge of the distribution and concentration of LD in the serum and CSF of healthy dogs will set the foundation for future studies of canine LD as a potentially clinically useful biomarker.


Subject(s)
Dogs/blood , Dogs/cerebrospinal fluid , L-Lactate Dehydrogenase/blood , L-Lactate Dehydrogenase/cerebrospinal fluid , Animals , Densitometry/veterinary , Electrophoresis/veterinary , Female , Isoenzymes/blood , Isoenzymes/cerebrospinal fluid , Male , Reference Values
13.
ILAR J ; 59(2): 177-194, 2018 12 31.
Article in English | MEDLINE | ID: mdl-30668740

ABSTRACT

Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs-replacement, refinement, and reduction-to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.


Subject(s)
Hazardous Substances , Animals , Animals, Laboratory , Disease Models, Animal , Models, Theoretical
14.
Vet Microbiol ; 206: 84-90, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28377132

ABSTRACT

Bluetongue (BT) is an economically important, non-zoonotic arboviral disease of certain wild and domestic species of cloven-hooved ungulates. Bluetongue virus (BTV) is the causative agent and the occurrence of BTV infection is distinctly seasonal in temperate regions of the world, and dependent on the presence of vector biting midges (e.g. Culicoides sonorensis in much of North America). In recent years, severe outbreaks have occurred throughout Europe and BTV is endemic in most tropical and temperate regions of the world. Several vaccines have been licensed for commercial use, including modified live (live-attenuated) and inactivated products, and this review summarizes recent strategies developed for BTV vaccines with emphasis on technologies suitable for differentiating naturally infected from vaccinated animals. The goal of this review is to evaluate realistic vaccine strategies that might be utilized to control or prevent future outbreaks of BT.


Subject(s)
Bluetongue virus/immunology , Bluetongue/prevention & control , Ceratopogonidae/virology , Disease Outbreaks/veterinary , Insect Vectors/virology , Viral Vaccines/immunology , Animals , Bluetongue/epidemiology , Bluetongue/virology , Disease Outbreaks/prevention & control , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...