Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 14(10): 1917-1930, 2016 10.
Article in English | MEDLINE | ID: mdl-27501520

ABSTRACT

Essentials Endothelial injury is thought to be a key event in thrombotic thrombocytopenic purpura (TTP). Endothelial and cardiac damages were assessed in a model of TTP using ADAMTS-13 knockout mice. Damages of cardiac perfusion and function were associated with nitric oxide pathway alteration. Endothelial dysfunction constitutes a critical event in TTP development and cardiac injury. SUMMARY: Background Cardiac alterations represent a major cause of mortality in patients with thrombotic thrombocytopenic purpura (TTP). Endothelial injury remains poorly defined, but seems to be a key initiating event leading to the formation of platelet-rich thrombi in TTP patients. Objectives To assess the changes in endothelial function and the induced cardiac damage in a mouse model of TTP. Patients/methods We used an animal model in which TTP-like symptoms are triggered by injection of 2000 units kg-1 of recombinant von Willebrand factor in ADAMTS-13 knockout mice. Results These mice developed TTP-like symptoms, i.e. severe thrombocytopenia, schistocytosis, and anemia. On day 2, magnetic resonance imaging demonstrated a decrease in left ventricular perfusion associated with alteration of left ventricular ejection fraction, fractional shortening, and cardiac output, suggesting early systolic dysfunction. This was associated with decrease in endothelium-mediated relaxation responses to acetylcholine in mesenteric and coronary arteries, demonstrating severe early endothelial dysfunction. In parallel, we showed decreased cardiac expression of endothelial nitric oxide (NO) synthase and increased expression of antioxidant enzymes, suggesting alteration of the NO pathway. At this time, cardiac immunohistochemistry revealed an increase in the expression of VCAM-1 and E-selectin. Conclusion This study provides evidence that the heart is a sensitive target organ in TTP, and shows, for the first time, strong mesenteric and coronary endothelial dysfunction in an induced-TTP model. The mechanisms incriminated are the occurrence of a pro-oxidant state, and proadhesive and proinflammatory phenotypes. This previously largely unrecognized vascular dysfunction may represent an important contributor to the systemic organ failure occurring in TTP.


Subject(s)
ADAMTS13 Protein/genetics , Endothelium, Vascular/pathology , Purpura, Thrombotic Thrombocytopenic/diagnosis , Animals , Antioxidants/metabolism , Disease Models, Animal , E-Selectin/metabolism , Female , Heart Ventricles/pathology , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/chemistry , Nitric Oxide Synthase Type III/metabolism , Oxidants/metabolism , Perfusion , Phenotype , Purpura, Thrombotic Thrombocytopenic/pathology , Reactive Oxygen Species/metabolism , Recombinant Proteins/pharmacology , Thrombosis/pathology , Vascular Cell Adhesion Molecule-1/metabolism , Ventricular Function, Left , von Willebrand Factor/pharmacology
2.
J Thromb Haemost ; 14(7): 1410-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27371116

ABSTRACT

UNLABELLED: Essentials ADAMTS-13-deficiency is a cause of thrombotic thrombocytopenic purpura (TTP). Preclinical safety of recombinant human ADAMTS-13 (BAX930) was shown in animal models. Preclinical efficacy of BAX930 was shown in a mouse model of TTP. BAX930 showed advantageous efficacy over fresh frozen plasma, the current standard of care. Click to hear Dr Cataland and Prof. Lämmle present a seminar on Thrombotic Thrombocytopenic Purpura (TTP): new Insights in Pathogenesis and Treatment Modalities. SUMMARY: Background Thrombotic thrombocytopenic purpura (TTP) is a rare blood disorder characterized by microthrombosis in small blood vessels of the body, resulting in a low platelet count. Baxalta has developed a new recombinant ADAMTS-13 (rADAMTS-13) product (BAX930) for on-demand and prophylactic treatment of patients with hereditary TTP (hTTP). Objectives To evaluate the pharmacokinetics, efficacy and safety of BAX930 in different species, by use of an extensive preclinical program. Methods The prophylactic and therapeutic efficacies of BAX930 were tested in a previously established TTP mouse model. Pharmacokinetics were evaluated after single intravenous bolus injection in mice and rats, and after repeated dosing in cynomolgus monkeys. Toxicity was assessed in rats and monkeys, safety pharmacology in monkeys, and local tolerance in rabbits. Results BAX930 was shown to be efficacious, as demonstrated by a stabilized platelet count in ADAMTS-13 knockout mice that were thrombocytopenic when treated. Prophylactic efficacy was dose-dependent and comparable with that achieved by treatment with fresh frozen plasma, the mainstay of hTTP treatment. Therapeutic efficacy was treatment interval-dependent. Safety pharmacology evaluation did not show any deleterious effects of BAX930 on cardiovascular and respiratory functions in monkeys. The compound's pharmacokinetics were similar and dose-proportional in mice, rats, and monkeys. BAX930 was well tolerated in rats, monkeys, and rabbits, even at the highest doses tested. Conclusions These results demonstrate that BAX930 has a favorable preclinical profile, and support the clinical development of rADAMTS-13 for the treatment of hTTP.


Subject(s)
ADAMTS13 Protein/pharmacology , Purpura, Thrombotic Thrombocytopenic/drug therapy , ADAMTS13 Protein/genetics , Animals , Area Under Curve , Blood Platelets/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Macaca fascicularis , Male , Mice , Plasma/metabolism , Platelet Count , Purpura, Thrombotic Thrombocytopenic/blood , Rabbits , Rats , Recombinant Proteins/pharmacology , Species Specificity , Thrombosis/blood , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...