Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 19(3): 669-686, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38486495

ABSTRACT

The understanding of protein-protein interaction mechanisms is key to the atomistic description of cell signaling pathways and for the development of new drugs. In this context, the mechanism of intrinsically disordered proteins folding upon binding has attracted attention. The VirB9 C-terminal domain (VirB9Ct) and the VirB7 N-terminal motif (VirB7Nt) associate with VirB10 to form the outer membrane core complex of the Type IV Secretion System injectisome. Despite forming a stable and rigid complex, VirB7Nt behaves as a random coil, while VirB9Ct is intrinsically dynamic in the free state. Here we combined NMR, stopped-flow fluorescence, and computer simulations using structure-based models to characterize the VirB9Ct-VirB7Nt coupled folding and binding mechanism. Qualitative data analysis suggested that VirB9Ct preferentially binds to VirB7Nt by way of a conformational selection mechanism at lower temperatures. However, at higher temperatures, energy barriers between different VirB9Ct conformations are more easily surpassed. Under these conditions the formation of non-native initial encounter complexes may provide alternative pathways toward the native complex conformation. These observations highlight the intimate relationship between folding and binding, calling attention to the fact that the two molecular partners must search for the most favored intramolecular and intermolecular interactions on a rugged and funnelled conformational energy landscape, along which multiple intermediates may lead to the final native state.


Subject(s)
Intrinsically Disordered Proteins , Computer Simulation , Fluorescence , Temperature , Protein Folding , Protein Binding
2.
Microb Cell ; 8(11): 262-275, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34782859

ABSTRACT

Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.

3.
Chembiochem ; 6(9): 1628-37, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16094693

ABSTRACT

Recognition of the lac operator by the lac repressor involves specific interactions between residues in the repressor's recognition helix and bases in the DNA major groove. Tyr17 and Gln18, at positions 1 and 2 in the lac repressor recognition helix, can be exchanged for other amino acids to generate mutant repressors that display altered specificity. We have solved the solution structure of a protein-DNA complex of an altered-specificity mutant lac headpiece in which Tyr17 and Gln18 were exchanged for valine and alanine, respectively, as found in the recognition helix of the gal repressor. As previously described by Lehming et al. (EMBO J. 1987, 6, 3145-3153), this altered-specificity mutant of the lac repressor recognizes a variant lac operator that is similar to the gal operator Oe. The mutant lac headpiece showed the predicted specificity and is also able to mimic the gal repressor by recognizing and bending the natural gal operator Oe. These structural data show that, while most of the anchoring points that help the lac headpiece to assemble on the lac operator were preserved, a different network of protein-DNA interactions connecting Ala17 and Val18 to bases in the DNA major groove drives the specificity towards the altered operator.


Subject(s)
DNA/metabolism , Escherichia coli Proteins/metabolism , Mutation/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Amino Acid Sequence , Base Sequence , Crystallography, X-Ray , DNA/chemistry , Escherichia coli Proteins/genetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Repressor Proteins/chemistry , Sequence Alignment , Substrate Specificity , Valine/genetics , Valine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...