Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 111: 406-417, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32439614

ABSTRACT

Calcium phosphate nanoparticles (100 nm) were fluorescently labelled with poly(ethyleneimine) (PEIATTO490LS; red fluorescence). They were loaded with a Tandem fusion protein consisting of mRFP1-eGFP (red and green fluorescence in the same molecule)that acts as smart biological pH sensor to trace nanoparticles inside cells. Its fluorescence is also coupled to the structural integrity of the protein, i.e. it is also a label for a successful delivery of a functional protein into the cell. At pH 7.4, the fluorescence of both proteins (red and green) is detectable. At a pH of 4.5-5 inside the lysosomes, the green fluorescence is quenched due to the protonation of the eGFP chromophore, but the pH-independent red fluorescence of mRFP1 remains. The nanoparticles were taken up by cells (cell lines: HeLa, Caco-2 and A549) via endocytic pathways and then directed to lysosomes. Time-resolved confocal laser scanning microscopy confirmed mRFP1 and nanoparticles co-localizing with lysosomes. The fluorescence of eGFP was only detectable outside lysosomes, i.e. most likely inside early endosomes or at the cell membrane during the uptake, indicating the neutral pH at these locations. The Tandem fusion protein provides a versatile platform to follow the intracellular pathway of bioactive nanocarriers, e.g. therapeutic proteins. The transfection with a Tandem-encoding plasmid by calcium phosphate nanoparticles led to an even intracellular protein distribution in cytosol and nucleoplasm, i.e. very different from direct protein uptake. Neither dissolved protein nor dissolved plasmid DNA were taken up by the cells, underscoring the necessity for a suitable carrier like a nanoparticle. STATEMENT OF SIGNIFICANCE: A pH-sensitive protein ("tandem") was used to follow the pathway of calcium phosphate nanoparticles. This protein consists of a pH-sensitive fluorophore (eGFP; green) and a pH-independent fluorophore (mRFP1; red). This permits to follow the pathway of a nanoparticle inside a cell. At a low pH inside an endolysosome, the green fluorescence vanishes but the red fluorescence persists. This is also a very useful model for the delivery of therapeutic proteins into cells. The delivery by nanoparticles was compared with the protein expression after cell transfection with plasmid DNA encoding for the tandem protein. High-resolution image analysis gave quantitative data on the intracellular protein distribution.


Subject(s)
Nanoparticles , Caco-2 Cells , Calcium Phosphates , Green Fluorescent Proteins/genetics , Humans , Hydrogen-Ion Concentration , Transfection
2.
Nanomedicine ; 16: 138-148, 2019 02.
Article in English | MEDLINE | ID: mdl-30594660

ABSTRACT

Herpes simplex viruses 1 and 2 are among the most ubiquitous human infections and persist lifelong in their host. Upon primary infection or reactivation from ganglia, the viruses spread by direct cell-cell contacts (cell-to-cell spread) and thus escape from the host immune response. We have developed a monoclonal antibody (mAb 2c), which inhibits the HSV cell-to-cell spread, thereby protecting from lethal genital infection and blindness in animal models. In the present study we have designed a nanoparticle-based vaccine to induce protective antibody responses exceeding the cell-to-cell spread inhibiting properties of mAb 2c. We used biodegradable calcium phosphate (CaP) nanoparticles coated with a synthetic peptide that represents the conformational epitope on HSV-1 gB recognized by mAb 2c. The CaP nanoparticles additionally contained a TLR-ligand CpGm and were formulated with adjuvants to facilitate the humoral immune response. This vaccine effectively protected mice from lethal HSV-1 infection by inducing cell-to-cell spread inhibiting antibodies.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Calcium Phosphates/chemistry , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Herpesvirus Vaccines/immunology , Herpesvirus Vaccines/therapeutic use , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Animals , Chlorocebus aethiops , Female , Herpesvirus Vaccines/chemistry , Mice , Mice, Inbred BALB C , Vero Cells
3.
Acta Biomater ; 64: 401-410, 2017 12.
Article in English | MEDLINE | ID: mdl-28963016

ABSTRACT

The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action was discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. A modular system where the immunoactive toll-like-receptor ligand 3 (TLR-3) poly(I:C) was incorporated into calcium phosphate nanoparticles was developed. The nanoparticles had a hydrodynamic diameter of 275nm and a zeta potential of +20mV, measured by dynamic light scattering. The diameter of the solid core was 120nm by scanning electron microscopy. In vitro, the nanoparticle uptake was investigated after 1 and 24h of incubation of THP-1 cells (macrophages) with nanoparticles by fluorescence microscopy. After intravenous injection into BALB/c and C57BL/6J mice, respectively, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. Pronounced immunostimulatory effects of the nanoparticles were found in vitro with primary liver cells, i.e. Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) from wild-type C57BL/6J mice. Thus, they represent a suitable alternative to hydrodynamic injection treatments for future vaccination concepts. STATEMENT OF SIGNIFICANCE: The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action has been discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. We have developed a modular system where poly(I:C) was incorporated into calcium phosphate nanoparticles. The uptake into relevant liver cells was studied both in vitro and in vivo. After intravenous injection into mice, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. The corresponding strong immune reaction proves their high potential to turn up the immune system, e.g. against viral infections, without adverse side reactions.


Subject(s)
Calcium Phosphates , Drug Delivery Systems/methods , Immunization/methods , Nanoparticles/chemistry , Poly I-C , Toll-Like Receptor 3/agonists , Animals , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Humans , Mice , Mice, Inbred BALB C , Poly I-C/chemistry , Poly I-C/pharmacology , THP-1 Cells
4.
PLoS One ; 12(6): e0178260, 2017.
Article in English | MEDLINE | ID: mdl-28586345

ABSTRACT

Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.


Subject(s)
Drug Delivery Systems , Nanoparticles/administration & dosage , Phycoerythrin/administration & dosage , Proteolysis/drug effects , Biological Transport/drug effects , Calcium Phosphates/administration & dosage , Calcium Phosphates/chemistry , Endocytosis , Endosomes/drug effects , HEK293 Cells , HeLa Cells , Humans , Lysosomes/drug effects , Macrolides/administration & dosage , Nanoparticles/chemistry , Phycoerythrin/chemistry
5.
Acc Chem Res ; 50(6): 1383-1390, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28480714

ABSTRACT

Research on nanoparticles has evolved into a major topic in chemistry. Concerning biomedical research, nanoparticles have decisively entered the field, creating the area of nanomedicine where nanoparticles are used for drug delivery, imaging, and tumor targeting. Besides these functions, scientists have addressed the specific ways in which nanoparticles interact with biomolecules, with proteins being the most prominent example. Depending on their size, shape, charge, and surface functionality, specifically designed nanoparticles can interact with proteins in a defined way. Proteins have typical dimensions of 5-20 nm. Ultrasmall nanoparticles (size about 1-2 nm) can address specific epitopes on the surface of a protein, for example, an active center of an enzyme. Medium-sized nanoparticles (size about 5 nm) can interact with proteins on a 1:1 basis. Large nanoparticles (above 20 nm) are big in comparison to many proteins and therefore are at the borderline to a two-dimensional surface onto which a protein will adsorb. This can still lead to irreversible structural changes in a protein and a subsequent loss of function. However, as most cells readily take up nanoparticles of almost any size, it is easily possible to use nanoparticles as transporters for proteins into a cell, for example, to address an internal receptor. Much work has been dedicated to this approach, but it is constrained by two processes that can only be observed in living cells or organisms. First, nanoparticles are usually taken up by endocytosis and are delivered into an intracellular endosome. After fusion with a lysosome, a degradation or denaturation of the protein cargo by the acidic environment or by proteases may occur before it can enter the cytoplasm. Second, nanoparticles are rapidly coated with proteins upon contact with biological media like blood. This so-called protein corona influences the contact with other proteins, cells, or tissue and may prevent the desired interaction. Essentially, these effects cannot be understood in purely chemical approaches but require biological environments and systems because the underlying processes are simply too complicated to be modeled in nonbiological systems. The area of nanoparticle-protein interactions strongly relies on different approaches: Synthetic chemistry is involved to prepare, stabilize, and functionalize nanoparticles. High-end analytical chemistry is required to understand the nature of a nanoparticle surface and the steps of its interaction with proteins. Concepts from supramolecular chemistry help to understand the complex noncovalent interactions between the surfaces of proteins and nanoparticles. Protein chemistry and biophysical chemistry are required to understand the behavior of a protein in contact with a nanoparticle. Finally, all chemical concepts must live up to the "biological reality", first in cell culture experiments in vitro and finally in animal or human experiments in vivo, to open new therapies in the 21st century. This interdisciplinary approach makes the field highly exciting but also highly demanding for chemists who, however, have to learn to understand the language of other areas.


Subject(s)
Nanoparticles/chemistry , Proteins/chemistry , Animals , Humans , Lysosomes/chemistry , Macromolecular Substances/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...