Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Periodontol 2000 ; 89(1): 19-40, 2022 06.
Article in English | MEDLINE | ID: mdl-35244966

ABSTRACT

Lipopolysaccharide is a virulence factor of gram-negative bacteria with a crucial importance to the bacterial surface integrity. From the host's perspective, lipopolysaccharide plays a role in both local and systemic inflammation, activates both innate and adaptive immunity, and can trigger inflammation either directly (as a microbe-associated molecular pattern) or indirectly (by inducing the generation of nonmicrobial, danger-associated molecular patterns). Translocation of lipopolysaccharide into the circulation causes endotoxemia, which is typically measured as the biological activity of lipopolysaccharide to induce coagulation of an aqueous extract of blood cells of the assay. Apparently healthy subjects have a low circulating lipopolysaccharide activity, since it is neutralized and cleared rapidly. However, chronic endotoxemia is involved in the pathogenesis of many inflammation-driven conditions, especially cardiometabolic disorders. These include atherosclerotic cardiovascular diseases, obesity, liver diseases, diabetes, and metabolic syndrome, where endotoxemia has been recognized as a risk factor. The main source of endotoxemia is thought to be the gut microbiota. However, the oral dysbiosis in periodontitis, which is typically enriched with gram-negative bacterial species, may also contribute to endotoxemia. As endotoxemia is associated with an increased risk of cardiometabolic disorders, lipopolysaccharide could be considered as a molecular link between periodontal microbiota and cardiometabolic diseases.


Subject(s)
Atherosclerosis , Endotoxemia , Periodontitis , Atherosclerosis/complications , Dysbiosis/complications , Endotoxemia/complications , Humans , Inflammation , Lipopolysaccharides , Periodontitis/microbiology
2.
J Am Heart Assoc ; 10(21): e022482, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34668383

ABSTRACT

Background Translocation of lipopolysaccharide from gram-negative bacteria into the systemic circulation results in endotoxemia. In addition to acute infections, endotoxemia is detected in cardiometabolic disorders, such as cardiovascular diseases and obesity. Methods and Results We performed a genome-wide association study of serum lipopolysaccharide activity in 11 296 individuals from 6 different Finnish study cohorts. Endotoxemia was measured by limulus amebocyte lysate assay in the whole population and by 2 other techniques (Endolisa and high-performance liquid chromatography/tandem mass spectrometry) in subpopulations. The associations of the composed genetic risk score of endotoxemia and thrombosis-related clinical end points for 195 170 participants were analyzed in FinnGen. Lipopolysaccharide activity had a genome-wide significant association with 741 single-nucleotide polymorphisms in 5 independent loci, which were mainly located at genes affecting the contact activation of the coagulation cascade and lipoprotein metabolism and explained 1.5% to 9.2% of the variability in lipopolysaccharide activity levels. The closest genes included KNG1, KLKB1, F12, SLC34A1, YPEL4, CLP1, ZDHHC5, SERPING1, CBX5, and LIPC. The genetic risk score of endotoxemia was associated with deep vein thrombosis, pulmonary embolism, pulmonary heart disease, and venous thromboembolism. Conclusions The biological activity of lipopolysaccharide in the circulation (ie, endotoxemia) has a small but highly significant genetic component. Endotoxemia is associated with genetic variation in the contact activation pathway, vasoactivity, and lipoprotein metabolism, which play important roles in host defense, lipopolysaccharide neutralization, and thrombosis, and thereby thromboembolism and stroke.


Subject(s)
Endotoxemia , Stroke , Venous Thromboembolism , Endotoxemia/genetics , Genetic Profile , Genome-Wide Association Study , Humans , Lipopolysaccharides , Lipoproteins , Thrombosis
3.
Front Cell Infect Microbiol ; 11: 774665, 2021.
Article in English | MEDLINE | ID: mdl-35004349

ABSTRACT

The use of systemic antibiotics may influence the oral microbiota composition. Our aim was to investigate in this retrospective study whether the use of prescribed antibiotics associate with periodontal status, oral microbiota, and antibodies against the periodontal pathogens. The Social Insurance Institution of Finland Data provided the data on the use of systemic antibiotics by record linkage to purchased medications and entitled reimbursements up to 1 year before the oral examination and sampling. Six different classes of antibiotics were considered. The Parogene cohort included 505 subjects undergoing coronary angiography with the mean (SD) age of 63.4 (9.2) years and 65% of males. Subgingival plaque samples were analysed using the checkerboard DNA-DNA hybridisation. Serum and saliva antibody levels to periodontal pathogens were analysed with immunoassays and lipopolysaccharide (LPS) activity with the LAL assay. Systemic antibiotics were prescribed for 261 (51.7%) patients during the preceding year. The mean number of prescriptions among them was 2.13 (range 1-12), and 29.4% of the prescriptions were cephalosporins, 25.7% penicillins, 14.3% quinolones, 12.7% macrolides or lincomycin, 12.0% tetracycline, and 5.8% trimethoprim or sulphonamides. In linear regression models adjusted for age, sex, current smoking, and diabetes, number of antibiotic courses associated significantly with low periodontal inflammation burden index (PIBI, p < 0.001), bleeding on probing (BOP, p = 0.006), and alveolar bone loss (ABL, p = 0.042). Cephalosporins associated with all the parameters. The phyla mainly affected by the antibiotics were Bacteroidetes and Spirochaetes. Their levels were inversely associated with the number of prescriptions (p = 0.010 and p < 0.001) and directly associated with the time since the last prescription (p = 0.019 and p < 0.001). Significant inverse associations were observed between the number of prescriptions and saliva concentrations of Prevotella intermedia, Tannerella forsythia, and Treponema denticola and subgingival bacterial amounts of Porphyromonas gingivalis, P. intermedia, T. forsythia, and T. denticola. Saliva or serum antibody levels did not present an association with the use of antibiotics. Both serum (p = 0.031) and saliva (p = 0.032) LPS activity was lower in patients having any antibiotic course less than 1 month before sampling. Systemic antibiotics have effects on periodontal inflammation and oral microbiota composition, whereas the effects on host immune responses against the periodontal biomarker species seem unchanged.


Subject(s)
Anti-Bacterial Agents , Microbiota , Aggregatibacter actinomycetemcomitans , Anti-Bacterial Agents/therapeutic use , Biomarkers , Humans , Male , Middle Aged , Porphyromonas gingivalis , Retrospective Studies
4.
Eur J Oral Sci ; 126 Suppl 1: 26-36, 2018 10.
Article in English | MEDLINE | ID: mdl-30178551

ABSTRACT

Clinical periodontitis is associated with an increased risk for cardiovascular diseases (CVDs) through systemic inflammation as the etiopathogenic link. Whether the oral microbiota, especially its quality, quantity, serology, and virulence factors, plays a role in atherogenesis is not clarified. Patients with periodontitis are exposed to bacteria and their products, which have access to the circulation directly through inflamed oral tissues and indirectly (via saliva) through the gastrointestinal tract, resulting in systemic inflammatory and immunologic responses. Periodontitis is associated with persistent endotoxemia, which has been identified as a notable cardiometabolic risk factor. The serology of bacterial biomarkers for oral dysbiosis is associated with an increased risk for subclinical atherosclerosis, prevalent and future coronary artery disease, and incident and recurrent stroke. In addition to species-specific antibodies, the immunologic response includes persistent, cross-reactive, proatherogenic antibodies against host-derived antigens. Periodontitis may affect lipoprotein metabolism at all levels, and all lipoprotein classes are affected. Periodontitis or its bacterial signatures may be involved not only in increased storage of proatherogenic lipids but also in attenuation of the anti-atherogenic processes, thereby putatively increasing the net risk of atherosclerosis. In this review we summarize possible molecular mediators between the dysbiotic oral microbiota and atherosclerotic processes.


Subject(s)
Cardiovascular Diseases/etiology , Dysbiosis/complications , Mouth/microbiology , Atherosclerosis/etiology , Cardiovascular Diseases/microbiology , Humans , Periodontitis/complications , Periodontitis/microbiology
5.
Innate Immun ; 24(7): 439-447, 2018 10.
Article in English | MEDLINE | ID: mdl-30176756

ABSTRACT

Genetic factors play a role in periodontitis. Here we examined whether the risk haplotype of MHC class III region BAT1-NFKBIL1-LTA and lymphotoxin-α polymorphisms associate with salivary biomarkers of periodontal disease. A total of 455 individuals with detailed clinical and radiographic periodontal health data were included in the study. A 610 K genotyping chip and a Sequenom platform were used in genotyping analyses. Phospholipid transfer protein activity, concentrations of lymphotoxin-α, IL-8 and myeloperoxidase, and a cumulative risk score (combining Porphyromonas gingivalis, IL-1ß and matrix metalloproteinase-8) were examined in saliva samples. Elevated IL-8 and myeloperoxidase concentrations and cumulative risk scores associated with advanced tooth loss, deepened periodontal pockets and signs of periodontal inflammation. In multiple logistic regression models adjusted for periodontal parameters and risk factors, myeloperoxidase concentration (odds ratio (OR); 1.37, P = 0.007) associated with increased odds for having the risk haplotype and lymphotoxin-α concentration with its genetic variants rs2857708, rs2009658 and rs2844482. In conclusion, salivary levels of IL-8, myeloperoxidase and cumulative risk scores associate with periodontal inflammation and tissue destruction, while those of myeloperoxidase and lymphotoxin-α associate with genetic factors as well.


Subject(s)
Bacteroidaceae Infections/genetics , Genotype , Periodontitis/genetics , Porphyromonas gingivalis/physiology , Salivary Glands/physiology , Adaptor Proteins, Signal Transducing , Aged , DEAD-box RNA Helicases/genetics , Female , Genetic Predisposition to Disease , Haplotypes , Histocompatibility Antigens Class II/genetics , Humans , Interleukin-8/metabolism , Lymphotoxin-alpha/genetics , Lymphotoxin-alpha/metabolism , Male , Matrix Metalloproteinases/metabolism , Middle Aged , Periodontitis/diagnosis , Polymorphism, Single Nucleotide , Risk , Saliva/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...