Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114330, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38865241

ABSTRACT

The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.


Subject(s)
Fragile X Mental Retardation Protein , Neurons , RNA, Messenger , Humans , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Neurons/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Stress, Physiological/genetics , 5' Untranslated Regions/genetics , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Trinucleotide Repeats/genetics , Trinucleotide Repeat Expansion/genetics
2.
Neuron ; 111(24): 3988-4005.e11, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37820724

ABSTRACT

Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Mitochondrial Diseases , Humans , Fragile X Mental Retardation Protein/genetics , Autism Spectrum Disorder/metabolism , Neurons/metabolism , Neurogenesis , Mitochondrial Diseases/metabolism , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Neoplasm Proteins/metabolism , Transcription Factors/metabolism
3.
Mol Psychiatry ; 26(11): 6845-6867, 2021 11.
Article in English | MEDLINE | ID: mdl-33863995

ABSTRACT

Parvalbumin interneurons (PVIs) are affected in many psychiatric disorders including schizophrenia (SCZ), however the mechanism remains unclear. FXR1, a high confident risk gene for SCZ, is indispensable but its role in the brain is largely unknown. We show that deleting FXR1 from PVIs of medial prefrontal cortex (mPFC) leads to reduced PVI excitability, impaired mPFC gamma oscillation, and SCZ-like behaviors. PVI-specific translational profiling reveals that FXR1 regulates the expression of Cacna1h/Cav3.2 a T-type calcium channel implicated in autism and epilepsy. Inhibition of Cav3.2 in PVIs of mPFC phenocopies whereas elevation of Cav3.2 in PVIs of mPFC rescues behavioral deficits resulted from FXR1 deficiency. Stimulation of PVIs using a gamma oscillation-enhancing light flicker rescues behavioral abnormalities caused by FXR1 deficiency in PVIs. This work unveils the function of a newly identified SCZ risk gene in SCZ-relevant neurons and identifies a therapeutic target and a potential noninvasive treatment for psychiatric disorders.


Subject(s)
Parvalbumins , Schizophrenia , Humans , Interneurons/metabolism , Neurons/metabolism , Parvalbumins/metabolism , Prefrontal Cortex/metabolism , RNA-Binding Proteins/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism
4.
Nat Neurosci ; 22(3): 386-400, 2019 03.
Article in English | MEDLINE | ID: mdl-30742117

ABSTRACT

Fragile X syndrome results from a loss of the RNA-binding protein fragile X mental retardation protein (FMRP). How FMRP regulates neuronal development and function remains unclear. Here we show that FMRP-deficient immature neurons exhibit impaired dendritic maturation, altered expression of mitochondrial genes, fragmented mitochondria, impaired mitochondrial function, and increased oxidative stress. Enhancing mitochondrial fusion partially rescued dendritic abnormalities in FMRP-deficient immature neurons. We show that FMRP deficiency leads to reduced Htt mRNA and protein levels and that HTT mediates FMRP regulation of mitochondrial fusion and dendritic maturation. Mice with hippocampal Htt knockdown and Fmr1-knockout mice showed similar behavioral deficits that could be rescued by treatment with a mitochondrial fusion compound. Our data unveil mitochondrial dysfunction as a contributor to the impaired dendritic maturation of FMRP-deficient neurons and suggest a role for interactions between FMRP and HTT in the pathogenesis of fragile X syndrome.


Subject(s)
Dendrites/metabolism , Dentate Gyrus/metabolism , Fragile X Mental Retardation Protein/metabolism , Huntingtin Protein/metabolism , Mitochondrial Dynamics , Animals , Dentate Gyrus/growth & development , Female , Fragile X Mental Retardation Protein/genetics , Gene Knockdown Techniques , Genes, Mitochondrial , Huntingtin Protein/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL