Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Neuroimaging ; 34(2): 211-216, 2024.
Article in English | MEDLINE | ID: mdl-38148283

ABSTRACT

BACKGROUND AND PURPOSE: Adverse neurological effects after cancer therapy are common, but biomarkers to diagnose, monitor, or risk stratify patients are still not validated or used clinically. An accessible imaging method, such as fluorodeoxyglucose positron emission tomography (FDG PET) of the brain, could meet this gap and serve as a biomarker for functional brain changes. We utilized FDG PET to evaluate which brain regions are most susceptible to altered glucose metabolism after chemoradiation in patients with head and neck cancer (HNCa). METHODS: Real-world FDG PET images were acquired as standard of care before and after chemoradiation for HNCa in 68 patients. Linear mixed-effects voxelwise models assessed changes after chemoradiation in cerebral glucose metabolism quantified with standardized uptake value ratio (SUVR), covarying for follow-up time and patient demographics. RESULTS: Voxelwise analysis revealed two large clusters of decreased glucose metabolism in the medial frontal and polar temporal cortices following chemoradiation, with decreases of approximately 5% SUVR after therapy. CONCLUSIONS: These findings provide evidence that standard chemoradiation for HNCa can lead to decreased neuronal glucose metabolism, contributing to literature emphasizing the vulnerability of the frontal and anterior temporal lobes, especially in HNCa, where these areas may be particularly vulnerable to indirect radiation-induced injury. FDG PET shows promise as a sensitive biomarker for assessing these changes.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms , Humans , Fluorodeoxyglucose F18/metabolism , Positron-Emission Tomography/methods , Biomarkers/metabolism , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/therapy , Glucose/metabolism
2.
Clin Cancer Res ; 27(23): 6467-6478, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34475101

ABSTRACT

PURPOSE: Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN: [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/µmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS: In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS: We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain Neoplasms/pathology , Diazonium Compounds , Glioblastoma/pathology , Glycolysis , Humans , Mice , Positron-Emission Tomography/methods , Pyruvate Kinase/metabolism , Sulfanilic Acids
3.
Mol Psychiatry ; 26(3): 888-896, 2021 03.
Article in English | MEDLINE | ID: mdl-31332262

ABSTRACT

Vascular endothelial growth factor (VEGF) is associated with the clinical manifestation of Alzheimer's disease (AD). However, the role of the VEGF gene family in neuroprotection is complex due to the number of biological pathways they regulate. This study explored associations between brain expression of VEGF genes with cognitive performance and AD pathology. Genetic, cognitive, and neuropathology data were acquired from the Religious Orders Study and Rush Memory and Aging Project. Expression of ten VEGF ligand and receptor genes was quantified using RNA sequencing of prefrontal cortex tissue. Global cognitive composite scores were calculated from 17 neuropsychological tests. ß-amyloid and tau burden were measured at autopsy. Participants (n = 531) included individuals with normal cognition (n = 180), mild cognitive impairment (n = 148), or AD dementia (n = 203). Mean age at death was 89 years and 37% were male. Higher prefrontal cortex expression of VEGFB, FLT4, FLT1, and PGF was associated with worse cognitive trajectories (p ≤ 0.01). Increased expression of VEGFB and FLT4 was also associated with lower cognition scores at the last visit before death (p ≤ 0.01). VEGFB, FLT4, and FLT1 were upregulated among AD dementia compared with normal cognition participants (p ≤ 0.03). All four genes associated with cognition related to elevated ß-amyloid (p ≤ 0.01) and/or tau burden (p ≤ 0.03). VEGF ligand and receptor genes, specifically genes relevant to FLT4 and FLT1 receptor signaling, are associated with cognition, longitudinal cognitive decline, and AD neuropathology. Future work should confirm these observations at the protein level to better understand how changes in VEGF transcription and translation relate to neurodegenerative disease.


Subject(s)
Alzheimer Disease , Cognitive Aging , Cognitive Dysfunction , Neurodegenerative Diseases , Aging , Alzheimer Disease/genetics , Amyloid beta-Peptides , Brain , Cognitive Dysfunction/genetics , Female , Humans , Male , Neuropsychological Tests , Vascular Endothelial Growth Factor A/genetics
4.
Eur J Nucl Med Mol Imaging ; 47(13): 2998-3007, 2020 12.
Article in English | MEDLINE | ID: mdl-32535655

ABSTRACT

PURPOSE: We aimed to evaluate the performance of deep learning-based generalization of ultra-low-count amyloid PET/MRI enhancement when applied to studies acquired with different scanning hardware and protocols. METHODS: Eighty simultaneous [18F]florbetaben PET/MRI studies were acquired, split equally between two sites (site 1: Signa PET/MRI, GE Healthcare, 39 participants, 67 ± 8 years, 23 females; site 2: mMR, Siemens Healthineers, 64 ± 11 years, 23 females) with different MRI protocols. Twenty minutes of list-mode PET data (90-110 min post-injection) were reconstructed as ground-truth. Ultra-low-count data obtained from undersampling by a factor of 100 (site 1) or the first minute of PET acquisition (site 2) were reconstructed for ultra-low-dose/ultra-short-time (1% dose and 5% time, respectively) PET images. A deep convolution neural network was pre-trained with site 1 data and either (A) directly applied or (B) trained further on site 2 data using transfer learning. Networks were also trained from scratch based on (C) site 2 data or (D) all data. Certified physicians determined amyloid uptake (+/-) status for accuracy and scored the image quality. The peak signal-to-noise ratio, structural similarity, and root-mean-squared error were calculated between images and their ground-truth counterparts. Mean regional standardized uptake value ratios (SUVR, reference region: cerebellar cortex) from 37 successful site 2 FreeSurfer segmentations were analyzed. RESULTS: All network-synthesized images had reduced noise than their ultra-low-count reconstructions. Quantitatively, image metrics improved the most using method B, where SUVRs had the least variability from the ground-truth and the highest effect size to differentiate between positive and negative images. Method A images had lower accuracy and image quality than other methods; images synthesized from methods B-D scored similarly or better than the ground-truth images. CONCLUSIONS: Deep learning can successfully produce diagnostic amyloid PET images from short frame reconstructions. Data bias should be considered when applying pre-trained deep ultra-low-count amyloid PET/MRI networks for generalization.


Subject(s)
Deep Learning , Amyloid , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed
5.
Neurobiol Aging ; 87: 18-25, 2020 03.
Article in English | MEDLINE | ID: mdl-31791659

ABSTRACT

Literature suggests vascular endothelial growth factor A (VEGFA) is protective among those at highest risk for Alzheimer's disease (AD). Apolipoprotein E (APOE) ε4 allele carriers represent a highly susceptible population for cognitive decline, and VEGF may confer distinct protection among APOE-ε4 carriers. We evaluated interactions between cortical expression of 10 VEGF gene family members and APOE-ε4 genotype to clarify which VEGF genes modify the association between APOE-ε4 and cognitive decline. Data were obtained from the Religious Orders Study and Rush Memory and Aging Project (N = 531). Linear regression assessed interactions on global cognition. VEGF genes NRP1 and VEGFA interacted with APOE-ε4 on cognitive performance (p.fdr < 0.05). Higher NRP1 expression correlated with worse outcomes among ε4 carriers but better outcomes among ε4 noncarriers, suggesting NRP1 modifies the risk for poor cognitive scores based on APOE-ε4 status. NRP1 regulates angiogenesis, and literature suggests vessels in APOE-ε4 brains are more prone to leaking, perhaps placing young vessels at risk for ischemia. Results suggest that future therapeutics targeting brain angiogenesis should also consider ε4 allele status.


Subject(s)
Aging/genetics , Apolipoprotein E4/genetics , Cognitive Aging , Cognitive Dysfunction/genetics , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Vascular Endothelial Growth Factor A/genetics , Aged , Aged, 80 and over , Female , Genotype , Humans , Male , Neovascularization, Physiologic/genetics , Neuropilin-1/genetics , Neuropilin-1/physiology
6.
Brain Imaging Behav ; 11(1): 205-213, 2017 02.
Article in English | MEDLINE | ID: mdl-26843008

ABSTRACT

Women are disproportionately affected by Alzheimer's disease (AD) in terms of both disease prevalence and severity. Previous autopsy work has suggested that, in the presence of AD neuropathology, females are more susceptible to the clinical manifestation of AD. This manuscript extends that work by evaluating whether sex alters the established associations between cerebrospinal fluid (CSF) biomarker levels and brain aging outcomes (hippocampal volume, cognition). Participants were drawn from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and included individuals with normal cognition (n = 348), mild cognitive impairment (n = 565), and AD (n = 185). We leveraged mixed effects regression models to assess the interaction between sex and baseline cerebrospinal fluid biomarker levels of amyloid-ß42 (Aß-42) and total tau on cross-sectional and longitudinal brain aging outcomes. We found a significant interaction between sex and Aß-42 on longitudinal hippocampal atrophy (p = 0.002), and longitudinal decline in memory (p = 0.017) and executive function (p = 0.025). Similarly, we observed an interaction between sex and total tau level on longitudinal hippocampal atrophy (p = 0.008), and longitudinal decline in executive function (p = 0.034). Women with Aß-42 and total tau levels indicative of worse pathological changes showed more rapid hippocampal atrophy and cognitive decline. The sex difference was particularly pronounced among individuals with MCI, with lower education, and varied by APOE Îµ4 allele. These results suggest females may be more susceptible to the clinical manifestation of AD.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Sex Characteristics , Aged , Aged, 80 and over , Aging/genetics , Aging/pathology , Aging/physiology , Aging/psychology , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/genetics , Atrophy , Biomarkers , Brain/physiopathology , Cognitive Dysfunction/genetics , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Regression Analysis , tau Proteins/cerebrospinal fluid
7.
Front Aging Neurosci ; 6: 183, 2014.
Article in English | MEDLINE | ID: mdl-25140149

ABSTRACT

BACKGROUND: While a great deal of work has gone into understanding the relationship between Cerebrospinal fluid (CSF) biomarkers, brain atrophy, and disease progression, less work has attempted to investigate how genetic variation modifies these relationships. The goal of this study was two-fold. First, we sought to identify high-risk vs. low-risk individuals based on their CSF tau and Aß load and characterize these individuals with regard to brain atrophy in an AD-relevant region of interest. Next, we sought to identify genetic variants that modified the relationship between biomarker classification and neurodegeneration. METHODS: Participants were categorized based on established cut-points for biomarker positivity. Mixed model regression was used to quantify longitudinal change in the left inferior lateral ventricle. Interaction analyses between single nucleotide polymorphisms (SNPs) and biomarker group status were performed using a genome wide association study (GWAS) approach. Correction for multiple comparisons was performed using the Bonferroni procedure. RESULTS: One intergenic SNP (rs4866650) and one SNP within the SPTLC1 gene (rs7849530) modified the association between amyloid positivity and neurodegeneration. A transcript variant of WDR11-AS1 gene (rs12261764) modified the association between tau positivity and neurodegeneration. These effects were consistent across the two sub-datasets and explained approximately 3% of variance in ventricular dilation. One additional SNP (rs6887649) modified the association between amyloid positivity and baseline ventricular volume, but was not observed consistently across the sub-datasets. CONCLUSIONS: Genetic variation modifies the association between AD biomarkers and neurodegeneration. Genes that regulate the molecular response in the brain to oxidative stress may be particularly relevant to neural vulnerability to the damaging effects of amyloid-ß.

8.
J Neurodev Disord ; 6(1): 8, 2014.
Article in English | MEDLINE | ID: mdl-24713364

ABSTRACT

BACKGROUND: Individuals with Down Syndrome (DS) are reported to experience early onset of brain aging. However, it is not well understood how pre-existing neurodevelopmental effects versus neurodegenerative processes might be contributing to the observed pattern of brain atrophy in younger adults with DS. The aims of the current study were to: (1) to confirm previous findings of age-related changes in DS compared to adults with typical development (TD), (2) to test for an effect of these age-related changes in a second neurodevelopmental disorder, Williams syndrome (WS), and (3) to identify a pattern of regional age-related effects that are unique to DS. METHODS: High-resolution T1-weighted MRI of the brains of subjects with DS, WS, and TD controls were segmented, and estimates of regional brain volume were derived using FreeSurfer. A general linear model was employed to test for age-related effects on volume between groups. Secondary analyses in the DS group explored the relationship between brain volume and neuropsychological tests and APOE. RESULTS: Consistent with previous findings, the DS group showed significantly greater age-related effects relative to TD controls in total gray matter and in regions of the orbitofrontal cortex and the parietal cortex. Individuals with DS also showed significantly greater age-related effects on volume of the left and right inferior lateral ventricles (LILV and RILV, respectively). There were no significant differences in age-related effects on volume when comparing the WS and TD groups. In the DS group, cognitive tests scores measuring signs of dementia and APOE ϵ4 carrier status were associated with LILV and RILV volume. CONCLUSIONS: Individuals with DS demonstrated a unique pattern of age-related effects on gray matter and ventricular volume, the latter of which was associated with dementia rating scores in the DS group. Results may indicate that early onset of brain aging in DS is primarily due to DS-specific neurodegenerative processes, as opposed to general atypical neurodevelopment.

9.
Alzheimers Dement ; 10(6): 637-645.e1, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24656848

ABSTRACT

BACKGROUND: A subset of individuals present at autopsy with the pathologic features of Alzheimer's disease having never manifest the clinical symptoms. We sought to identify genetic factors that modify the relationship between phosphorylated tau (PTau) and dilation of the lateral inferior ventricles. METHODS: We used data from 700 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). A genome-wide association study approach was used to identify PTau × single nucleotide polymorphism (SNP) interactions. Variance explained by these interactions was quantified using hierarchical linear regression. RESULTS: Five SNP × PTau interactions passed a Bonferroni correction, one of which (rs4728029, POT1, 2.6% of variance) was consistent across ADNI-1 and ADNI-2/GO subjects. This interaction also showed a trend-level association with memory performance and levels of interleukin-6 receptor. CONCLUSIONS: Our results suggest that rs4728029 modifies the relationship between PTau and both ventricular dilation and cognition, perhaps through an altered neuroinflammatory response.


Subject(s)
Alzheimer Disease/pathology , Lateral Ventricles/pathology , Nerve Degeneration/etiology , Polymorphism, Single Nucleotide/genetics , tau Proteins/genetics , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/complications , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Brain/pathology , Cognition Disorders/etiology , Cytokines/metabolism , Female , Genome-Wide Association Study , Genotype , Humans , Linear Models , Magnetic Resonance Imaging , Male
10.
Neurobiol Aging ; 35(3): 460-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24112793

ABSTRACT

The driving theoretical framework of Alzheimer's disease (AD) has been built around the amyloid-ß (Aß) cascade in which amyloid pathology precedes and drives tau pathology. Other evidence has suggested that tau and amyloid pathology may arise independently. Both lines of research suggest that there may be epistatic relationships between genes involved in amyloid and tau pathophysiology. In the current study, we hypothesized that genes coding glycogen synthase kinase 3 (GSK-3) and comparable tau kinases would modify genetic risk for amyloid plaque pathology. Quantitative amyloid positron emission tomography data from the Alzheimer's Disease Neuroimaging Initiative served as the quantitative outcome in regression analyses, covarying for age, gender, and diagnosis. Three interactions reached statistical significance, all involving the GSK3ß single nucleotide polymorphism rs334543-2 with APBB2 (rs2585590, rs3098914) and 1 with APP (rs457581). These interactions explained 1.2%, 1.5%, and 1.5% of the variance in amyloid deposition respectively. Our results add to a growing literature on the role of GSK-3 activity in amyloid processing and suggest that combined variation in GSK3ß and APP-related genes may result in increased amyloid burden.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Glycogen Synthase Kinase 3/genetics , Plaque, Amyloid/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Female , Gene Expression Regulation , Glycogen Synthase Kinase 3/physiology , Glycogen Synthase Kinase 3 beta , Humans , Linear Models , Male , Middle Aged , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Risk , tau Proteins/metabolism
11.
J Alzheimers Dis ; 38(1): 145-54, 2014.
Article in English | MEDLINE | ID: mdl-24077433

ABSTRACT

The genetic etiology of late-onset Alzheimer's disease (LOAD) has proven complex, involving clinical and genetic heterogeneity and gene-gene interactions. Recent genome wide association studies in LOAD have led to the discovery of novel genetic risk factors; however, the investigation of gene-gene interactions has been limited. Conventional genetic studies often use binary disease status as the primary phenotype, but for complex brain-based diseases, neuroimaging data can serve as quantitative endophenotypes that correlate with disease status and closely reflect pathological changes. In the Alzheimer's Disease Neuroimaging Initiative cohort, we tested for association of genetic interactions with longitudinal MRI measurements of the inferior lateral ventricles (ILVs), which have repeatedly shown a relationship to LOAD status and progression. We performed linear regression to evaluate the ability of pathway-derived SNP-SNP pairs to predict the slope of change in volume of the ILVs. After Bonferroni correction, we identified four significant interactions in the right ILV (RILV) corresponding to gene-gene pairs SYNJ2-PI4KA, PARD3-MYH2, PDE3A-ABHD12B, and OR2L13-PRKG1 and one significant interaction in the left ILV (LILV) corresponding to SYNJ2-PI4KA. The SNP-SNP interaction corresponding to SYNJ2-PI4KA was identical in the RILV and LILV and was the most significant interaction in each (RILV: p = 9.13 × 10(-12); LILV: p = 8.17 × 10(-13)). Both genes belong to the inositol phosphate signaling pathway which has been previously associated with neurodegeneration in AD and we discuss the possibility that perturbation of this pathway results in a down-regulation of the Akt cell survival pathway and, thereby, decreased neuronal survival, as reflected by increased volume of the ventricles.


Subject(s)
Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Inositol/genetics , Lateral Ventricles/pathology , Signal Transduction/genetics , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Cognitive Dysfunction/genetics , Down-Regulation/genetics , Enzymes/genetics , Enzymes/metabolism , Female , Functional Laterality , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Inositol/metabolism , Longitudinal Studies , Male , Phenotype , Polymorphism, Single Nucleotide
12.
Hum Genet ; 133(1): 85-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24026422

ABSTRACT

Late-onset Alzheimer's disease (LOAD) is known to have a complex, oligogenic etiology, with considerable genetic heterogeneity. We investigated the influence of genetic interactions between genes in the Alzheimer's disease (AD) pathway on amyloid-beta (Aß) deposition as measured by PiB or AV-45 ligand positron emission tomography (PET) to aid in understanding LOAD's genetic etiology. Subsets of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts were used for discovery and for two independent validation analyses. A significant interaction between RYR3 and CACNA1C was confirmed in all three of the independent ADNI datasets. Both genes encode calcium channels expressed in the brain. The results shown here support previous animal studies implicating interactions between these calcium channels in amyloidogenesis and suggest that the pathological cascade of this disease may be modified by interactions in the amyloid-calcium axis. Future work focusing on the mechanisms of such relationships may inform targets for clinical intervention.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Calcium Channels, L-Type/genetics , Epistasis, Genetic , Positron-Emission Tomography , Ryanodine Receptor Calcium Release Channel/genetics , Aged , Aged, 80 and over , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/metabolism , Brain/pathology , Calcium Channels, L-Type/metabolism , Chromosome Mapping , Female , Genotype , Homeostasis , Humans , Male , Polymorphism, Single Nucleotide , Reproducibility of Results , Ryanodine Receptor Calcium Release Channel/metabolism
13.
Neurobiol Aging ; 34(5): 1518.e9-18, 2013 May.
Article in English | MEDLINE | ID: mdl-23107432

ABSTRACT

Missing heritability in late onset Alzheimer disease can be attributed, at least in part, to heterogeneity in disease status and to the lack of statistical analyses exploring genetic interactions. In the current study, we use quantitative intermediate phenotypes derived from magnetic resonance imaging data available from the Alzheimer's Disease Neuroimaging Initiative, and we test for association with gene-gene interactions within biological pathways. Regional brain volumes from the hippocampus (HIP) and entorhinal cortex (EC) were estimated from baseline and 12-month magnetic resonance imaging scans. Approximately 560,000 single nucleotide polymorphisms (SNPs) were available genome-wide. We tested all pairwise SNP-SNP interactions (approximately 151 million) within 212 Kyoto Encyclopedia of Genes and Genomes pathways for association with 12-month regional atrophy rates using linear regression, with sex, APOE ε4 carrier status, age, education, and clinical status as covariates. A total of 109 SNP-SNP interactions were associated with right HIP atrophy, and 125 were associated with right EC atrophy. Enrichment analysis indicated significant SNP-SNP interactions were overrepresented in the calcium signaling and axon guidance pathways for both HIP and EC atrophy and in the ErbB signaling pathway for HIP atrophy.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Hippocampus/metabolism , Hippocampus/pathology , Nerve Tissue Proteins/metabolism , Aged, 80 and over , Atrophy , Female , Genetic Association Studies , Humans , Male , Nerve Tissue Proteins/genetics , Prevalence , Tennessee/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...