Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Clin Med ; 13(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38610905

ABSTRACT

Background: Systemic lupus erythematosus (SLE) is a prototype autoimmune disease associated with increased cardiovascular (CV) burden. Besides increased arterial stiffness and subclinical atherosclerosis, microvascular dysfunction is considered an important component in the pathophysiology of CV disease. However, there is a lack of data regarding the effect of multiple target organ damage (TOD) on CV health. Objectives: This study aimed to evaluate (i) the presence of microvascular changes in SLE in various vascular beds, (ii) the possible associations between the accumulation of microvascular TOD and CV risk and (iii) whether Galectin-3 represents a predictor of combined microvascular TOD. Methods: Participants underwent (i) evaluation of skin microvascular perfusion (laser speckle contrast analysis), (ii) fundoscopy (non-mydriatic fundus camera), (iii) indirect assessment of myocardial perfusion (subendocardial viability ratio) and (iv) determination of urine albumin-to-creatinine ratio (UACR). CV risk was calculated using the QResearch Risk Estimator version 3 (QRISK3). Serum Galectin-3 levels were determined. Results: Forty-seven SLE patients and fifty controls were studied. SLE patients demonstrated impaired skin microvascular reactivity (160.2 ± 41.0 vs. 203.6 ± 40.1%), retinal arteriolar narrowing (88.1 ± 11.1 vs. 94.6 ± 13.5 µm) and higher UACR levels compared to controls. Furthermore, SLE individuals had significantly higher Galectin-3 levels [21.5(6.1) vs. 6.6(6.6) ng/dL], QRISK3 scores [7.0(8.6) vs. 1.3(3.6)%] and a greater chance for microvascular dysfunction. In the SLE group, patients with multiple TOD exhibited higher QRISK3. In the multivariate analysis, the accumulation of TOD correlated with disease activity and Galectin-3 (p < 0.05). Conclusions: Our study showed for the first time that SLE patients exhibit a greater number of cases of TOD. The accumulation of TOD was associated with increased CV risk. Clinicians dealing with SLE should be aware and seek microvascular alterations.

2.
J Pers Med ; 14(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38673014

ABSTRACT

Preeclampsia is a progressive multi-systemic disorder characterized by proteinuria, critical organ damage, and new-onset hypertension. It can be further complicated by HELLP syndrome (hemolysis, elevated liver enzymes, low platelets), resulting in critical liver or renal damage, disseminated coagulation, and grand mal seizures. This study aimed to examine the involvement of ADAMTS13, von Willebrand, and the complement system in the pathogenesis of preeclampsia/HELLP syndrome. We studied 30 Caucasian preeclamptic pregnant women and a control group of 15 healthy pregnancies. Genetic sequencing of ADAMTS13 and complement regulatory genes (MiniSeq System, Illumina) was performed. The modified Ham test was used to check for complement activation, ADAMTS13 activity, von Willebrand antigen (vWFAg) levels, and soluble C5b-9 levels were measured. Patients with preeclampsia had a decreased ADAMTS13 activity and increased C5b-9 levels. The vWFAg was significantly correlated with ADAMTS13 activity (r = 0.497, p = 0.003). Risk-factor variants were found in the genes of ADAMTS13, C3, thrombomodulin, CFB, CFH, MBL2, and, finally, MASP2. A portion of pregnant women with preeclampsia showed a decline in ADAMTS13 activity, correlated with vWFAg levels. These patients also exhibited an elevated complement activation and high-risk genetic variants in regulatory genes. Further research is needed to determine if these factors can serve as reliable biomarkers.

3.
Immunobiology ; 228(2): 152351, 2023 03.
Article in English | MEDLINE | ID: mdl-36805858

ABSTRACT

We have attempted to explore further the involvement of complement components in the host COVID-19 (Coronavirus disease-19) immune responses by targeted genotyping of COVID-19 adult patients and analysis for missense coding Single Nucleotide Polymorphisms (coding SNPs) of genes encoding Alternative pathway (AP) components. We have identified a small group of common coding SNPs in Survivors and Deceased individuals, present in either relatively similar frequencies (CFH and CFI SNPs) or with stark differences in their relative abundance (C3 and CFB SNPs). In addition, we have identified several sporadic, potentially protective, coding SNPs of C3, CFB, CFD, CFH, CFHR1 and CFI in Survivors. No coding SNPs were detected for CD46 and CD55. Our demographic analysis indicated that the C3 rs1047286 or rs2230199 coding SNPs were present in 60 % of all the Deceased patients (n = 25) (the rs2230199 in 67 % of all Deceased Males) and in 31 % of all the Survivors (n = 105, p = 0.012) (the rs2230199 in 25 % of all Survivor Males). When we analysed these two major study groups using the presence of the C3 rs1047286 or rs2230199 SNPs as potential biomarkers, we noticed the complete absence of the protective CFB rs12614 and rs641153 coding SNPs from Deceased Males compared to Females (p = 0.0023). We propose that in these individuals, C3 carrying the R102G and CFB lacking the R32W or the R32Q amino acid substitutions, may contribute to enhanced association dynamics of the C3bBb AP pre-convertase complex assembly, thus enabling the exploitation of the activation of the Complement Alternative pathway (AP) by SARS-CoV-2.


Subject(s)
COVID-19 , Macular Degeneration , Male , Female , Humans , Complement Factor B/genetics , Complement C3/genetics , Polymorphism, Single Nucleotide , Genotype , Macular Degeneration/genetics , Complement Factor H/genetics , SARS-CoV-2 , Complement C2/genetics
4.
Clin Exp Rheumatol ; 41(1): 6-14, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35238763

ABSTRACT

OBJECTIVES: Subclinical brain lesions have been reported in systemic lupus erythematosus (SLE) patients. Advanced neuroimaging techniques have revealed microstructural and microvascular alterations. Most studies examining structural or functional brain abnormalities were performed either at rest or during a mental task. Our study aimed to examine possible differences in cerebral oxygenation during exercise between SLE patients without known neuropsychiatric manifestations and age-matched controls, using near-infrared-spectroscopy (NIRS) and examine possible underlying mechanisms through evaluation of brain derived neurotrophic factor (BDNF) levels. METHODS: The protocol involved a seated rest, a 3-min submaximal (30%) handgrip exercise, and a 3-min recovery. Continuous-NIRS was used to monitor changes in cerebral-oxygenated (O2Hb), de-oxygenated (HHb) and total-haemoglobin (tHb). BDNF levels were measured in serum samples. RESULTS: Twenty-six SLE patients and 27 matched controls were enrolled. No differences were observed in baseline characteristics. During exercise, cerebral-O2Hb increased in both groups. However, SLE patients exhibited a significantly lower average- (1.20 ± 0.89 vs. 2.69 ± 2.46, p=0.001) and peak-O2Hb response (2.89 ± 1.56 vs. 5.83 ± 4.59, p=0.004) compared to controls. Serum BDNF levels were significantly lower in SLE patients compared to controls (p<0.01). CONCLUSIONS: To our knowledge, this is the first study to evaluate cerebral oxygenation during exercise using NIRS in SLE patients compared to age-matched controls. Our data show that SLE patients even without overt neuropsychiatric manifestations exhibit a blunted increase in cerebral-O2Hb during a submaximal exercise stimulus. Examining brain oxygenation during a simple exercise task may assist in identifying patients with early alterations in cerebral function.


Subject(s)
Brain-Derived Neurotrophic Factor , Lupus Erythematosus, Systemic , Humans , Hand Strength , Oxyhemoglobins/metabolism , Exercise , Oxygen Consumption
5.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203404

ABSTRACT

Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) and graft-versus-host disease (GvHD) represent life-threatening syndromes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In both conditions, endothelial dysfunction is a common denominator, and development of relevant biomarkers is of high importance for both diagnosis and prognosis. Despite the fact that soluble urokinase plasminogen activator receptor (suPAR) and growth differentiation factor-15 (GDF-15) have been determined as endothelial injury indices in various clinical settings, their role in HSCT-related complications remains unexplored. In this context, we used immunoenzymatic methods to measure suPAR and GDF-15 levels in HSCT-TMA, acute and/or chronic GVHD, control HSCT recipients, and apparently healthy individuals of similar age and gender. We found considerably greater SuPAR and GDF-15 levels in HSCT-TMA and GVHD patients compared to allo-HSCT and healthy patients. Both GDF-15 and suPAR concentrations were linked to EASIX at day 100 and last follow-up. SuPAR was associated with creatinine and platelets at day 100 and last follow-up, while GDF-15 was associated only with platelets, suggesting that laboratory values do not drive EASIX. SuPAR, but not GDF-15, was related to soluble C5b-9 levels, a sign of increased HSCT-TMA risk. Our study shows for the first time that suPAR and GDF-15 indicate endothelial damage in allo-HSCT recipients. Rigorous validation of these biomarkers in many cohorts may provide utility for their usefulness in identifying and stratifying allo-HSCT recipients with endothelial cell impairment.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Thrombotic Microangiopathies , Adult , Humans , Receptors, Urokinase Plasminogen Activator , Growth Differentiation Factor 15 , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Biomarkers
6.
Curr Issues Mol Biol ; 44(7): 2811-2824, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35877417

ABSTRACT

Complement dysregulation has been documented in adults with COVID-19 and implicated in relevant pediatric inflammatory responses against SARS-CoV-2. We propose that signatures of complement missense coding SNPs associated with dysregulation could also be identified in children with multisystem inflammatory syndrome (MIS-C). We investigated 71 pediatric patients with RT-PCR validated SARS-CoV-2 hospitalized in pediatric COVID-19 care units (November 2020-March 2021) in three major groups. Seven (7) patients suffered from MIS-C (MIS-C group), 32 suffered from COVID-19 and were hospitalized (admitted group), whereas 32 suffered from COVID-19, but were sent home. All patients survived and were genotyped for variations in the C3, C5, CFB, CFD, CFH, CFHR1, CFI, CD46, CD55, MASP1, MASP2, MBL2, COLEC11, FCN1, and FCN3 genes. Upon evaluation of the missense coding SNP distribution patterns along the three study groups, we noticed similarities, but also considerably increased frequencies of the alternative pathway (AP) associated with SNPs rs12614 CFB, rs1061170, and rs1065489 CFH in the MIS-C patients. Our analysis suggests that the corresponding substitutions potentially reduce the C3b-inactivation efficiency and promote slower and weaker AP C3bBb pre-convertase assembly on virions. Under these circumstances, the complement AP opsonization capacity may be impaired, leading to compromised immune clearance and systemic inflammation in the MIS-C syndrome.

7.
J Clin Med ; 11(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35743426

ABSTRACT

BACKGROUND: Carfilzomib, an irreversible proteasome inhibitor approved for the treatment of relapsed/refractory Multiple Myeloma (MM) has been associated with Thrombotic Microangiopathy (TMA). Several pathogenetic mechanisms of carfilzomib-induced TMA have been proposed; however, recently, there has been a shift of focus on the potential contribution of complement dysregulation. Our aim was to explore whether patients with carfilzomib-induced TMA harbor germline variants of complement-related genes, which have been characterized as risk factors for TMA. METHODS: We retrospectively recruited consecutive MM patients with carfilzomib-induced TMA and compared them to MM patients who received ≥4 cycles of carfilzomib and did not develop signs/symptoms of TMA, in a 1:2 ratio. Genomic DNA from peripheral blood was analyzed using next generation sequencing (NGS) with a complement-related gene panel; ADAMTS13 activity and soluble C5b-9 were measured using ELISA. RESULTS: Complement-related variants were more common in patients with carfilzomib-induced TMA compared to non-TMA controls, regardless of patient and treatment characteristics; ADAMTS13 activity and C5b-9 were compatible with the phenotype of complement-related TMA. CONCLUSIONS: We confirmed the previous findings that implicated complement-related genes in the pathogenesis of carfilzomib-induced TMA. Most importantly, by incorporating a control group of non-TMA MM patients treated with carfilzomib-based regimens and functional complement assays, we enhanced the credibility of our findings.

9.
J Clin Med ; 11(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35207208

ABSTRACT

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential weapons to control the spread of the coronavirus disease-19 (COVID-19) pandemic and protect immunocompromised patients. With a greater susceptibility to infection, sickle cell disease (SCD) patients are considered as "high risk" patients during the current COVID-19 pandemic. In our study, we try to determine the immune response of adult SCD patients monitored at our center after the first and second dose of the qualified mRNA vaccines available and correlate them to several disease-specific markers, as well as complement activation. The results demonstrate that the levels of neutralizing antibodies (nAbs) against SARS-CoV-2 were adequate for most patients studied after the second dose and there seemed to be a certain association with complement activation. Further studies are critical to determine the durability of this immune response and the potential benefit of a third dose.

10.
J Cell Mol Med ; 26(5): 1445-1455, 2022 03.
Article in English | MEDLINE | ID: mdl-35064759

ABSTRACT

There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.


Subject(s)
COVID-19/genetics , COVID-19/mortality , Neural Networks, Computer , COVID-19/epidemiology , Complement Activation/genetics , Complement Factor H/genetics , Complement System Proteins/genetics , Female , Greece/epidemiology , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Models, Genetic , Morbidity , Polymorphism, Single Nucleotide , Thrombomodulin/genetics
11.
Clin Immunol ; 226: 108726, 2021 05.
Article in English | MEDLINE | ID: mdl-33845193

ABSTRACT

Recent studies suggest excessive complement activation in severe coronavirus disease-19 (COVID-19). The latter shares common characteristics with complement-mediated thrombotic microangiopathy (TMA). We hypothesized that genetic susceptibility would be evident in patients with severe COVID-19 (similar to TMA) and associated with disease severity. We analyzed genetic and clinical data from 97 patients hospitalized for COVID-19. Through targeted next-generation-sequencing we found an ADAMTS13 variant in 49 patients, along with two risk factor variants (C3, 21 patients; CFH,34 patients). 31 (32%) patients had a combination of these, which was independently associated with ICU hospitalization (p = 0.022). Analysis of almost infinite variant combinations showed that patients with rs1042580 in thrombomodulin and without rs800292 in complement factor H did not require ICU hospitalization. We also observed gender differences in ADAMTS13 and complement-related variants. In light of encouraging results by complement inhibitors, our study highlights a patient population that might benefit from early initiation of specific treatment.


Subject(s)
ADAMTS13 Protein/genetics , COVID-19/genetics , Complement C3/genetics , Genetic Predisposition to Disease/genetics , Thrombomodulin/genetics , Aged , Algorithms , COVID-19/physiopathology , Complement Activation , Complement Factor H/genetics , Critical Care , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Hospitalization/statistics & numerical data , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors , Severity of Illness Index , Thrombotic Microangiopathies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...