Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 58(9): 3806-16, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25844760

ABSTRACT

The medicinal chemistry community has directed considerable efforts toward the discovery of selective inhibitors of interleukin-2 inducible T-cell kinase (ITK), given its role in T-cell signaling downstream of the T-cell receptor (TCR) and the implications of this target for inflammatory disorders such as asthma. We have previously disclosed a structure- and property-guided lead optimization effort which resulted in the discovery of a new series of tetrahydroindazole-containing selective ITK inhibitors. Herein we disclose further optimization of this series that resulted in further potency improvements, reduced off-target receptor binding liabilities, and reduced cytotoxicity. Specifically, we have identified a correlation between the basicity of solubilizing elements in the ITK inhibitors and off-target antiproliferative effects, which was exploited to reduce cytotoxicity while maintaining kinase selectivity. Optimized analogues were shown to reduce IL-2 and IL-13 production in vivo following oral or intraperitoneal dosing in mice.


Subject(s)
Indazoles/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/toxicity , Female , Humans , Indazoles/pharmacology , Indazoles/toxicity , Interleukin-13/biosynthesis , Interleukin-2/biosynthesis , Jurkat Cells , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/toxicity , Sulfoxides/chemistry , Sulfoxides/pharmacology , Sulfoxides/toxicity
2.
J Med Chem ; 57(13): 5714-27, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24918870

ABSTRACT

Interleukin-2 inducible T-cell kinase (ITK), a member of the Tec family of tyrosine kinases, plays a major role in T-cell signaling downstream of the T-cell receptor (TCR), and considerable efforts have been directed toward discovery of ITK-selective inhibitors as potential treatments of inflammatory disorders such as asthma. Using a previously disclosed indazole series of inhibitors as a starting point, and using X-ray crystallography and solubility forecast index (SFI) as guides, we evolved a series of tetrahydroindazole inhibitors with improved potency, selectivity, and pharmaceutical properties. Highlights include identification of a selectivity pocket above the ligand plane, and identification of appropriate lipophilic substituents to occupy this space. This effort culminated in identification of a potent and selective ITK inhibitor (GNE-9822) with good ADME properties in preclinical species.


Subject(s)
Indazoles/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Drug Design , Humans , Indazoles/pharmacokinetics , Indazoles/pharmacology , Jurkat Cells , Kinetics , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Solubility , Structure-Activity Relationship
3.
PLoS One ; 9(5): e96854, 2014.
Article in English | MEDLINE | ID: mdl-24816435

ABSTRACT

The expansion of a CAG trinucleotide repeat in the huntingtin gene, which produces huntingtin protein with an expanded polyglutamine tract, is the cause of Huntington's disease (HD). Recent studies have reported that RNAi suppression of polyglutamine-expanded huntingtin (mutant HTT) in HD animal models can ameliorate disease phenotypes. A key requirement for such preclinical studies, as well as eventual clinical trials, aimed to reduce mutant HTT exposure is a robust method to measure HTT protein levels in select tissues. We have developed several sensitive and selective assays that measure either total human HTT or polyglutamine-expanded human HTT proteins on the electrochemiluminescence Meso Scale Discovery detection platform with an increased dynamic range over other methods. In addition, we have developed an assay to detect endogenous mouse and rat HTT proteins in pre-clinical models of HD to monitor effects on the wild type protein of both allele selective and non-selective interventions. We demonstrate the application of these assays to measure HTT protein in several HD in vitro cellular and in vivo animal model systems as well as in HD patient biosamples. Furthermore, we used purified recombinant HTT proteins as standards to quantitate the absolute amount of HTT protein in such biosamples.


Subject(s)
Biological Assay/methods , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Peptides/metabolism , Amino Acid Sequence , Animals , Antibodies/immunology , Brain/metabolism , Cell Line , Female , Humans , Huntingtin Protein , Luminescent Measurements , Male , Mice , Molecular Sequence Data , Nerve Tissue Proteins/immunology , Nuclear Proteins/chemistry , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Rats , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...