Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Cell Rep Methods ; 4(9): 100862, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39288738

ABSTRACT

Genomic diversity within species can be driven by both point mutations and larger structural variations, but so far, strain-tracking approaches have focused mostly on the former. In a recent issue of Nature Biotechnology, Ley and colleagues1 introduce SynTracker, a tool designed for scalable strain tracking with microsynteny in low-coverage metagenomic settings.


Subject(s)
Metagenomics , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Software
2.
J Infect Dis ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189314

ABSTRACT

As investigations of low-biomass microbial communities have become more common, so too has the recognition of major challenges affecting these analyses. These challenges have been shown to compromise biological conclusions and have contributed to several controversies. Here, we review some of the most common and influential challenges in low-biomass microbiome research. We highlight key approaches to alleviate these potential pitfalls, combining experimental planning strategies and data analysis methods.

3.
ArXiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38883233

ABSTRACT

Cross-validation is a common method for estimating the predictive performance of machine learning models. In a data-scarce regime, where one typically wishes to maximize the number of instances used for training the model, an approach called 'leave-one-out cross-validation' is often used. In this design, a separate model is built for predicting each data instance after training on all other instances. Since this results in a single test data point available per model trained, predictions are aggregated across the entire dataset to calculate common rank-based performance metrics such as the area under the receiver operating characteristic or precision-recall curves. In this work, we demonstrate that this approach creates a negative correlation between the average label of each training fold and the label of its corresponding test instance, a phenomenon that we term distributional bias. As machine learning models tend to regress to the mean of their training data, this distributional bias tends to negatively impact performance evaluation and hyperparameter optimization. We show that this effect generalizes to leave-P-out cross-validation and persists across a wide range of modeling and evaluation approaches, and that it can lead to a bias against stronger regularization. To address this, we propose a generalizable rebalanced cross-validation approach that corrects for distributional bias. We demonstrate that our approach improves cross-validation performance evaluation in synthetic simulations and in several published leave-one-out analyses.

5.
Oncogene ; 43(15): 1127-1148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396294

ABSTRACT

In 2020, we identified cancer-specific microbial signals in The Cancer Genome Atlas (TCGA) [1]. Multiple peer-reviewed papers independently verified or extended our findings [2-12]. Given this impact, we carefully considered concerns by Gihawi et al. [13] that batch correction and database contamination with host sequences artificially created the appearance of cancer type-specific microbiomes. (1) We tested batch correction by comparing raw and Voom-SNM-corrected data per-batch, finding predictive equivalence and significantly similar features. We found consistent results with a modern microbiome-specific method (ConQuR [14]), and when restricting to taxa found in an independent, highly-decontaminated cohort. (2) Using Conterminator [15], we found low levels of human contamination in our original databases (~1% of genomes). We demonstrated that the increased detection of human reads in Gihawi et al. [13] was due to using a newer human genome reference. (3) We developed Exhaustive, a method twice as sensitive as Conterminator, to clean RefSeq. We comprehensively host-deplete TCGA with many human (pan)genome references. We repeated all analyses with this and the Gihawi et al. [13] pipeline, and found cancer type-specific microbiomes. These extensive re-analyses and updated methods validate our original conclusion that cancer type-specific microbial signatures exist in TCGA, and show they are robust to methodology.


Subject(s)
Microbiota , Neoplasms , Humans , Neoplasms/genetics , Microbiota/genetics
6.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405914

ABSTRACT

Every step in common microbiome profiling protocols has variable efficiency for each microbe. For example, different DNA extraction kits may have different efficiency for Gram-positive and -negative bacteria. These variable efficiencies, combined with technical variation, create strong processing biases, which impede the identification of signals that are reproducible across studies and the development of generalizable and biologically interpretable prediction models. "Batch-correction" methods have been used to alleviate these issues computationally with some success. However, many make strong parametric assumptions which do not necessarily apply to microbiome data or processing biases, or require the use of an outcome variable, which risks overfitting. Lastly and importantly, existing transformations used to correct microbiome data are largely non-interpretable, and could, for example, introduce values to features that were initially mostly zeros. Altogether, processing bias currently compromises our ability to glean robust and generalizable biological insights from microbiome data. Here, we present DEBIAS-M (Domain adaptation with phenotype Estimation and Batch Integration Across Studies of the Microbiome), an interpretable framework for inference and correction of processing bias, which facilitates domain adaptation in microbiome studies. DEBIAS-M learns bias-correction factors for each microbe in each batch that simultaneously minimize batch effects and maximize cross-study associations with phenotypes. Using benchmarks of HIV and colorectal cancer classification from gut microbiome data, and cervical neoplasia prediction from cervical microbiome data, we demonstrate that DEBIAS-M outperforms batch-correction methods commonly used in the field. Notably, we show that the inferred bias-correction factors are stable, interpretable, and strongly associated with specific experimental protocols. Overall, we show that DEBIAS-M allows for better modeling of microbiome data and identification of interpretable signals that are reproducible across studies.

7.
Cancer Epidemiol Biomarkers Prev ; 33(3): 371-380, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38117184

ABSTRACT

BACKGROUND: Esophageal adenocarcinoma (EAC) is rising in incidence, and established risk factors do not explain this trend. Esophageal microbiome alterations have been associated with Barrett's esophagus (BE) and dysplasia and EAC. The oral microbiome is tightly linked to the esophageal microbiome; this study aimed to identify salivary microbiome-related factors associated with BE, dysplasia, and EAC. METHODS: Clinical data and oral health history were collected from patients with and without BE. The salivary microbiome was characterized, assessing differential relative abundance of taxa by 16S rRNA gene sequencing and associations between microbiome composition and clinical features. Microbiome metabolic modeling was used to predict metabolite production. RESULTS: A total of 244 patients (125 non-BE and 119 BE) were analyzed. Patients with high-grade dysplasia (HGD)/EAC had a significantly higher prevalence of tooth loss (P = 0.001). There were significant shifts with increased dysbiosis associated with HGD/EAC, independent of tooth loss, with the largest shifts within the genus Streptococcus. Modeling predicted significant shifts in the microbiome metabolic capacities, including increases in L-lactic acid and decreases in butyric acid and L-tryptophan production in HGD/EAC. CONCLUSIONS: Marked dysbiosis in the salivary microbiome is associated with HGD and EAC, with notable increases within the genus Streptococcus and accompanying changes in predicted metabolite production. Further work is warranted to identify the biological significance of these alterations and to validate metabolic shifts. IMPACT: There is an association between oral dysbiosis and HGD/EAC. Further work is needed to establish the diagnostic, predictive, and causal potential of this relationship.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Microbiota , Tooth Loss , Humans , Dysbiosis , RNA, Ribosomal, 16S/genetics , Butyric Acid
9.
Nat Commun ; 14(1): 4997, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591872

ABSTRACT

Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. The vaginal microbiome has been associated with PTB, yet the mechanisms underlying this association are not fully understood. Understanding microbial genetic adaptations to selective pressures, especially those related to the host, may yield insights into these associations. Here, we analyze metagenomic data from 705 vaginal samples collected during pregnancy from 40 women who delivered preterm spontaneously and 135 term controls from the Multi-Omic Microbiome Study-Pregnancy Initiative. We find that the vaginal microbiome of pregnancies that ended preterm exhibited unique genetic profiles. It was more genetically diverse at the species level, a result which we validate in an additional cohort, and harbored a higher richness and diversity of antimicrobial resistance genes, likely promoted by transduction. Interestingly, we find that Gardnerella species drove this higher genetic diversity, particularly during the first half of the pregnancy. We further present evidence that Gardnerella spp. underwent more frequent recombination and stronger purifying selection in genes involved in lipid metabolism. Overall, our population genetics analyses reveal associations between the vaginal microbiome and PTB and suggest that evolutionary processes acting on vaginal microbes may play a role in adverse pregnancy outcomes such as PTB.


Subject(s)
Microbiota , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Premature Birth/genetics , Microbiota/genetics , Metagenome/genetics , Acclimatization , Biological Evolution
10.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425673

ABSTRACT

Esophageal adenocarcinoma (EAC) is rising in incidence and associated with poor survival, and established risk factors do not explain this trend. Microbiome alterations have been associated with progression from the precursor Barrett's esophagus (BE) to EAC, yet the oral microbiome, tightly linked to the esophageal microbiome and easier to sample, has not been extensively studied in this context. We aimed to assess the relationship between the salivary microbiome and neoplastic progression in BE to identify microbiome-related factors that may drive EAC development. We collected clinical data and oral health and hygiene history and characterized the salivary microbiome from 250 patients with and without BE, including 78 with advanced neoplasia (high grade dysplasia or early adenocarcinoma). We assessed differential relative abundance of taxa by 16S rRNA gene sequencing and associations between microbiome composition and clinical features and used microbiome metabolic modeling to predict metabolite production. We found significant shifts and increased dysbiosis associated with progression to advanced neoplasia, with these associations occurring independent of tooth loss, and the largest shifts were with the genus Streptococcus. Microbiome metabolic models predicted significant shifts in the metabolic capacities of the salivary microbiome in patients with advanced neoplasia, including increases in L-lactic acid and decreases in butyric acid and L-tryptophan production. Our results suggest both a mechanistic and predictive role for the oral microbiome in esophageal adenocarcinoma. Further work is warranted to identify the biological significance of these alterations, to validate metabolic shifts, and to determine whether they represent viable therapeutic targets for prevention of progression in BE.

11.
Nat Biotechnol ; 41(12): 1820-1828, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36928429

ABSTRACT

Sequencing-based approaches for the analysis of microbial communities are susceptible to contamination, which could mask biological signals or generate artifactual ones. Methods for in silico decontamination using controls are routinely used, but do not make optimal use of information shared across samples and cannot handle taxa that only partially originate in contamination or leakage of biological material into controls. Here we present Source tracking for Contamination Removal in microBiomes (SCRuB), a probabilistic in silico decontamination method that incorporates shared information across multiple samples and controls to precisely identify and remove contamination. We validate the accuracy of SCRuB in multiple data-driven simulations and experiments, including induced contamination, and demonstrate that it outperforms state-of-the-art methods by an average of 15-20 times. We showcase the robustness of SCRuB across multiple ecosystems, data types and sequencing depths. Demonstrating its applicability to microbiome research, SCRuB facilitates improved predictions of host phenotypes, most notably the prediction of treatment response in melanoma patients using decontaminated tumor microbiome data.


Subject(s)
Microbiota , Neoplasms , Humans , Microbiota/genetics , Phenotype
12.
Nat Microbiol ; 8(2): 246-259, 2023 02.
Article in English | MEDLINE | ID: mdl-36635575

ABSTRACT

Spontaneous preterm birth (sPTB) is a leading cause of maternal and neonatal morbidity and mortality, yet its prevention and early risk stratification are limited. Previous investigations have suggested that vaginal microbes and metabolites may be implicated in sPTB. Here we performed untargeted metabolomics on 232 second-trimester vaginal samples, 80 from pregnancies ending preterm. We find multiple associations between vaginal metabolites and subsequent preterm birth, and propose that several of these metabolites, including diethanolamine and ethyl glucoside, are exogenous. We observe associations between the metabolome and microbiome profiles previously obtained using 16S ribosomal RNA amplicon sequencing, including correlations between bacteria considered suboptimal, such as Gardnerella vaginalis, and metabolites enriched in term pregnancies, such as tyramine. We investigate these associations using metabolic models. We use machine learning models to predict sPTB risk from metabolite levels, weeks to months before birth, with good accuracy (area under receiver operating characteristic curve of 0.78). These models, which we validate using two external cohorts, are more accurate than microbiome-based and maternal covariates-based models (area under receiver operating characteristic curve of 0.55-0.59). Our results demonstrate the potential of vaginal metabolites as early biomarkers of sPTB and highlight exogenous exposures as potential risk factors for prematurity.


Subject(s)
Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Premature Birth/metabolism , Premature Birth/microbiology , Premature Birth/prevention & control , Xenobiotics/metabolism , Vagina/microbiology , Infant, Premature , Metabolome
13.
bioRxiv ; 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-36711990

ABSTRACT

Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. The vaginal microbiome has been associated with PTB, yet the mechanisms underlying this association are not fully understood. Understanding microbial genetic adaptations to selective pressures, especially those related to the host, may yield new insights into these associations. To this end, we analyzed metagenomic data from 705 vaginal samples collected longitudinally during pregnancy from 40 women who delivered preterm spontaneously and 135 term controls from the Multi-Omic Microbiome Study-Pregnancy Initiative (MOMS-PI). We find that the vaginal microbiome of pregnancies that ended preterm exhibits unique genetic profiles. It is more genetically diverse at the species level, a result which we validate in an additional cohort, and harbors a higher richness and diversity of antimicrobial resistance genes, likely promoted by transduction. Interestingly, we find that Gardnerella species, a group of central vaginal pathobionts, are driving this higher genetic diversity, particularly during the first half of the pregnancy. We further present evidence that Gardnerella spp. undergoes more frequent recombination and stronger purifying selection in genes involved in lipid metabolism. Overall, our results reveal novel associations between the vaginal microbiome and PTB using population genetics analyses, and suggest that evolutionary processes acting on the vaginal microbiome may play a vital role in adverse pregnancy outcomes such as preterm birth.

14.
Genome Res ; 32(3): 558-568, 2022 03.
Article in English | MEDLINE | ID: mdl-34987055

ABSTRACT

Patterns of sequencing coverage along a bacterial genome-summarized by a peak-to-trough ratio (PTR)-have been shown to accurately reflect microbial growth rates, revealing a new facet of microbial dynamics and host-microbe interactions. Here, we introduce Compute PTR (CoPTR): a tool for computing PTRs from complete reference genomes and assemblies. Using simulations and data from growth experiments in simple and complex communities, we show that CoPTR is more accurate than the current state of the art while also providing more PTR estimates overall. We further develop a theory formalizing a biological interpretation for PTRs. Using a reference database of 2935 species, we applied CoPTR to a case-control study of 1304 metagenomic samples from 106 individuals with inflammatory bowel disease. We show that growth rates are personalized, are only loosely correlated with relative abundances, and are associated with disease status. We conclude by showing how PTRs can be combined with relative abundances and metabolomics to investigate their effect on the microbiome.


Subject(s)
Metagenomics , Microbiota , Case-Control Studies , Genome, Bacterial , Humans , Metagenome , Microbiota/genetics
15.
Diabetes Care ; 45(3): 555-563, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35045174

ABSTRACT

OBJECTIVE: Previous studies have demonstrated an association between gut microbiota composition and type 1 diabetes (T1D) pathogenesis. However, little is known about the composition and function of the gut microbiome in adults with longstanding T1D or its association with host glycemic control. RESEARCH DESIGN AND METHODS: We performed a metagenomic analysis of the gut microbiome obtained from fecal samples of 74 adults with T1D, 14.6 ± 9.6 years following diagnosis, and compared their microbial composition and function to 296 age-matched healthy control subjects (1:4 ratio). We further analyzed the association between microbial taxa and indices of glycemic control derived from continuous glucose monitoring measurements and blood tests and constructed a prediction model that solely takes microbiome features as input to evaluate the discriminative power of microbial composition for distinguishing individuals with T1D from control subjects. RESULTS: Adults with T1D had a distinct microbial signature that separated them from control subjects when using prediction algorithms on held-out subjects (area under the receiver operating characteristic curve = 0.89 ± 0.03). Linear discriminant analysis showed several bacterial species with significantly higher scores in T1D, including Prevotella copri and Eubacterium siraeum, and species with higher scores in control subjects, including Firmicutes bacterium and Faecalibacterium prausnitzii (P < 0.05, false discovery rate corrected for all). On the functional level, several metabolic pathways were significantly lower in adults with T1D. Several bacterial taxa and metabolic pathways were associated with the host's glycemic control. CONCLUSIONS: We identified a distinct gut microbial signature in adults with longstanding T1D and associations between microbial taxa, metabolic pathways, and glycemic control indices. Additional mechanistic studies are needed to identify the role of these bacteria for potential therapeutic strategies.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Adult , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/microbiology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Glycemic Control , Humans
16.
Diabetes Care ; 45(3): 502-511, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34711639

ABSTRACT

OBJECTIVE: Despite technological advances, results from various clinical trials have repeatedly shown that many individuals with type 1 diabetes (T1D) do not achieve their glycemic goals. One of the major challenges in disease management is the administration of an accurate amount of insulin for each meal that will match the expected postprandial glycemic response (PPGR). The objective of this study was to develop a prediction model for PPGR in individuals with T1D. RESEARCH DESIGN AND METHODS: We recruited individuals with T1D who were using continuous glucose monitoring and continuous subcutaneous insulin infusion devices simultaneously to a prospective cohort and profiled them for 2 weeks. Participants were asked to report real-time dietary intake using a designated mobile app. We measured their PPGRs and devised machine learning algorithms for PPGR prediction, which integrate glucose measurements, insulin dosages, dietary habits, blood parameters, anthropometrics, exercise, and gut microbiota. Data of the PPGR of 900 healthy individuals to 41,371 meals were also integrated into the model. The performance of the models was evaluated with 10-fold cross validation. RESULTS: A total of 121 individuals with T1D, 75 adults and 46 children, were included in the study. PPGR to 6,377 meals was measured. Our PPGR prediction model substantially outperforms a baseline model with emulation of standard of care (correlation of R = 0.59 compared with R = 0.40 for predicted and observed PPGR respectively; P < 10-10). The model was robust across different subpopulations. Feature attribution analysis revealed that glucose levels at meal initiation, glucose trend 30 min prior to meal, meal carbohydrate content, and meal's carbohydrate-to-fat ratio were the most influential features for the model. CONCLUSIONS: Our model enables a more accurate prediction of PPGR and therefore may allow a better adjustment of the required insulin dosage for meals. It can be further implemented in closed loop systems and may lead to rationally designed nutritional interventions personally tailored for individuals with T1D on the basis of meals with expected low glycemic response.


Subject(s)
Diabetes Mellitus, Type 1 , Adult , Blood Glucose/analysis , Blood Glucose Self-Monitoring , Child , Cross-Over Studies , Humans , Insulin , Meals/physiology , Postprandial Period/physiology , Prospective Studies
17.
Sci Rep ; 11(1): 22794, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815499

ABSTRACT

Biomechanical and molecular processes of premature cervical remodeling preceding spontaneous preterm birth (sPTB) likely result from interactions between the cervicovaginal microbiota and host immune responses. A non-optimal cervicovaginal microbiota confers increased risk of sPTB. The cervicovaginal space is metabolically active in pregancy; microbiota can produce, modify, and degrade metabolites within this ecosystem. We establish that cervicovaginal metabolomic output clusters by microbial community in pregnancy among Black individuals, revealing increased metabolism within the amino acid and dipeptide pathways as hallmarks of a non-optimal microbiota. Few differences were detected in metabolomic profiles when stratified by birth outcome. The study raises the possibility that metabolites could distinguish women with greater risk of sPTB among those with similar cervicovaginal microbiota, and that metabolites within the amino acid and carbohydrate pathways may play a role in this distinction.


Subject(s)
Bacteria/isolation & purification , Black People/statistics & numerical data , Cervix Uteri/metabolism , Metabolome , Microbiota , Premature Birth/epidemiology , Vagina/metabolism , Adult , Bacteria/classification , Case-Control Studies , Cervix Uteri/microbiology , Female , Humans , Infant, Newborn , Pregnancy , Premature Birth/metabolism , Premature Birth/microbiology , United States/epidemiology , Vagina/microbiology
18.
Microorganisms ; 9(8)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34442819

ABSTRACT

BACKGROUND: Increasing evidence points to the esophageal microbiome as an important co-factor in esophageal neoplasia. Esophageal microbiome composition is strongly influenced by the oral microbiome. Salivary microbiome assessment has emerged as a potential non-invasive tool to identify patients at risk for esophageal cancer, but key host and environmental factors that may affect the salivary microbiome have not been well-defined. This study aimed to evaluate the impact of short-term dietary intake on salivary microbiome composition. METHODS: Saliva samples were collected from 69 subjects prior to upper endoscopy who completed the Automated Self-Administered 24-Hour (ASA24) Dietary Assessment. Salivary microbiome composition was determined using 16S rRNA amplicon sequencing. RESULTS: There was no significant correlation between alpha diversity and primary measures of short-term dietary intake (total daily calories, fat, fiber, fruit/vegetables, red meat intake, and fasting time). There was no evidence of clustering on beta diversity analyses. Very few taxonomic alterations were found for short-term dietary intake; an increased relative abundance of Neisseria oralis and Lautropia sp. was associated with high fruit and vegetable intake, and an increased relative abundance of a taxon in the family Gemellaceae was associated with increased red meat intake. CONCLUSIONS: Short-term dietary intake was associated with only minimal salivary microbiome alterations and does not appear to have a major impact on the potential use of the salivary microbiome as a biomarker for esophageal neoplasia.

19.
mSystems ; 6(4): e0081621, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34402639

ABSTRACT

A central paradigm in microbiome data analysis, which we term the genome-centric paradigm, is that a linear (non-branching) DNA sequence is the ideal representation of a microbial genome. This representation is natural, as microbes indeed have non-branching genomes. Tremendous discoveries in microbiology were made under this paradigm, but is it always optimal for microbiome research? In this Commentary, we claim that the realization of this paradigm in metagenomic assembly, a fundamental step in the "metagenomics analysis pipeline," suboptimally models the extensive genomic variability present in the microbiome. We outline our efforts to address these issues with a "genome-free" approach that eschews linear genomic representations in favor of a pan-metagenomic graph.

20.
Nature ; 595(7867): 355-357, 2021 07.
Article in English | MEDLINE | ID: mdl-34262197
SELECTION OF CITATIONS
SEARCH DETAIL