Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
J Pineal Res ; 76(5): e12986, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965880

ABSTRACT

This contribution reviews the role of inbred and transgenic mouse strains for deciphering the mammalian melatoninergic and circadian system. It focusses on the pineal organ as melatonin factory and two major targets of the melatoninergic system, the suprachiasmatic nuclei (SCN) and the hypophysial pars tuberalis (PT). Mammalian pinealocytes sharing molecular characteristics with true pineal and retinal photoreceptors synthesize and secrete melatonin into the blood and cerebrospinal fluid night by night. Notably, neuron-like connections exist between the deep pinealocytes and the habenular/pretectal region suggesting direct pineal-brain communication. Control of melatonin biosynthesis in rodents involves transcriptional regulation including phosphorylation of CREB and upregulation of mPer1. In the SCN, melatonin acts upon MT1 and MT2 receptors. Melatonin is not necessary to maintain the rhythm of the SCN molecular clockwork, but it has distinct effects on the synchronization of the circadian rhythm by light, facilitates re-entrainment of the circadian system to phase advances in the level of the SCN molecular clockwork by acting upon MT2 receptors and plays a stabilizing role in the circadian system as evidenced from locomotor activity recordings. While the effects in the SCN are subtle, melatonin is essential for PT functions. Via the MT1 receptor it drives the PT-intrinsic molecular clockwork and the retrograde and anterograde output pathways controlling seasonal rhythmicity. Although inbred and transgenic mice do not show seasonal reproduction, the pathways from the PT are fully intact if the animals are melatonin proficient. Thus, only melatonin-proficient strains are suited to investigate the circadian and melatoninergic systems.


Subject(s)
Circadian Rhythm , Melatonin , Animals , Melatonin/metabolism , Circadian Rhythm/physiology , Mice , Models, Animal , Suprachiasmatic Nucleus/metabolism , Mice, Transgenic , Pineal Gland/metabolism
2.
Front Physiol ; 13: 883637, 2022.
Article in English | MEDLINE | ID: mdl-35492605

ABSTRACT

The melatoninergic system comprises the neurohormone melatonin and its molecular targets. The major source of melatonin is the pineal organ where melatonin is rhythmically produced during darkness. In mammals, melatonin biosynthesis is controlled by the central circadian rhythm generator in the suprachiasmatic nucleus (SCN) and photoreceptors in the retina. Melatonin elicits its function principally through two specific receptors called MT1 and MT2. MT1 is highly expressed in the SCN and the hypophysial pars tuberalis (PT), an important interface for control of seasonal functions. The expression of the MT2 is more widespread. The role of the melatoninergic system in the control of seasonal functions, such as reproduction, has been known for more than 4 decades, but investigations on its impact on the circadian system under normal (entrained) conditions started 2 decades later by comparing mouse strains with a fully functional melatoninergic system with mouse strains which either produce insufficient amounts of melatonin or lack the melatonin receptors MT1 and MT2. These studies revealed that an intact melatoninergic system is not required for the generation or maintenance of rhythmic behavior under physiological entrained conditions. As shown by jet lag experiments, the melatoninergic system facilitated faster re-entrainment of locomotor activity accompanied by a more rapid adaptation of the molecular clock work in the SCN. This action depended on MT2. Further studies indicated that the endogenous melatoninergic system stabilizes the locomotor activity under entrained conditions. Notably, these effects of the endogenous melatoninergic system are subtle, suggesting that other signals such as corticosterone or temperature contribute to the synchronization of locomotor activity. Outdoor experiments lasting for a whole year indicate a seasonal plasticity of the chronotype which depends on the melatoninergic system. The comparison between mice with an intact or a compromised melatoninergic system also points toward an impact of this system on sleep, memory and metabolism.

3.
Sci Rep ; 12(1): 2969, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194054

ABSTRACT

Neuropsychological studies reported that shift workers show reduced cognitive performance and circadian dysfunctions which may impact structural and functional brain networks. Here we tested the hypothesis whether night shift work is associated with resting-state functional connectivity (RSFC), cortical thickness and gray matter volume in participants of the 1000BRAINS study for whom information on night shift work and imaging data were available. 13 PRESENT and 89 FORMER night shift workers as well as 430 control participants who had never worked in shift (NEVER) met these criteria and were included in our study. No associations between night shift work, three graph-theoretical measures of RSFC of 7 functional brain networks and brain morphology were found after multiple comparison correction. Preceding multiple comparison correction, our results hinted at an association between more years of shift work and higher segregation of the visual network in PRESENT shift workers and between shift work experience and lower gray matter volume of the left thalamus. Extensive neuropsychological investigations supplementing objective imaging methodology did not reveal an association between night shift work and cognition after multiple comparison correction. Our pilot study suggests that night shift work does not elicit general alterations in brain networks and affects the brain only to a limited extent. These results now need to be corroborated in studies with larger numbers of participants.


Subject(s)
Brain/physiopathology , Cognition , Nerve Net/physiopathology , Shift Work Schedule , Aged , Female , Humans , Male , Middle Aged , Pilot Projects
4.
Cells ; 12(1)2022 12 23.
Article in English | MEDLINE | ID: mdl-36611854

ABSTRACT

Chronic liver diseases including hepatocellular carcinoma (HCC) create a state of chronic inflammation that affects the brain via the liver-brain axis leading to an alteration of neurotransmission and cognition. However, little is known about the effects of HCC on the hippocampus, the key brain region for learning and memory. Moreover, radiotherapy used to treat HCC has severe side effects that impair patients' life quality. Thus, designing optimal strategies, such as chronotherapy, to enhance the efficacy and reduce the side effects of HCC treatment is critically important. We addressed the effects of HCC and the timed administration of radiotherapy in mice on the expression of pro-inflammatory cytokines, clock genes, markers for glial activation, oxidative stress, neuronal activity and proliferation in the hippocampal neurogenic niche. Our data showed that HCC induced the upregulation of genes encoding for pro-inflammatory cytokines, altered clock gene expressions and reduced proliferation in the hippocampus. Radiotherapy, in particular when applied during the light/inactive phase enhanced all these effects in addition to glial activation, increased oxidative stress, decreased neuronal activity and increased levels of phospho(p)-ERK. Our results suggested an interaction of the circadian molecular clockwork and the brain's innate immune system as key players in liver-brain crosstalk in HCC and that radiotherapy when applied during the light/inactive phase induced the most profound alterations in the hippocampus.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/radiotherapy , Liver Neoplasms/drug therapy , Cytokines/metabolism , Hippocampus/metabolism
5.
Cancer Med ; 10(21): 7712-7725, 2021 11.
Article in English | MEDLINE | ID: mdl-34545699

ABSTRACT

This study investigates whether a chronotherapeutic treatment of hepatocellular carcinoma (HCC) may improve treatment efficacy and mitigate side effects on non-tumoral liver (NTL). HCC was induced in Per2::luc mice which were irradiated at four time points of the day. Proliferation and DNA-double strand breaks were analyzed in irradiated and nonirradiated animals by detection of Ki67 and γ-H2AX. Prior to whole animal experiments, organotypic slice cultures were investigated to determine the dosage to be used in whole animal experiments. Irradiation was most effective at the proliferation peaks in HCC at ZT02 (early inactivity phase) and ZT20 (late activity phase). Irradiation effects on NTL were minimal at ZT20. As compared with NTL, nonirradiated HCC revealed disruption in daily variation and downregulation of all investigated clock genes except Per1. Irradiation affected rhythmic clock gene expression in NTL and HCC at all ZTs except at ZT20 (late activity phase). Irradiation at ZT20 had no effect on total leukocyte numbers. Our results indicate ZT20 as the optimal time point for irradiation of HCC in mice at which the ratio between efficacy of tumor treatment and toxic side effects was maximal. Translational studies are now needed to evaluate whether the late activity phase is the optimal time point for irradiation of HCC in man.


Subject(s)
Carcinoma, Hepatocellular/radiotherapy , Chronotherapy , Liver Neoplasms/radiotherapy , Animals , Blood Cell Count , CLOCK Proteins/genetics , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation , DNA Damage , Down-Regulation , Gene Expression , Histones/analysis , Ki-67 Antigen/analysis , Liver Neoplasms/blood , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Organ Culture Techniques , Time Factors
6.
Handb Clin Neurol ; 180: 227-251, 2021.
Article in English | MEDLINE | ID: mdl-34225932

ABSTRACT

The arcuate nucleus (ARC) is located in the mediobasal hypothalamus and forms a morphological and functional entity with the median eminence (ME), the ARC-ME. The ARC comprises several distinct types of neurons controlling prolactin release, food intake, and metabolism as well as reproduction and onset of puberty. The ME lacks a blood-brain barrier and provides an entry for peripheral signals (nutrients, leptin, ghrelin). ARC neurons are adjacent to the wall of the third ventricle. This facilitates the exchange of signals from and to the cerebrospinal fluid. The ventricular wall is composed of tanycytes that serve different functions. Axons of ARC neurons contribute to the tuberoinfundibular tract terminating in the ME on the hypophysial portal vessels (HPV) and establish one of the neurohumoral links between the hypothalamus and the pituitary. ARC neurons are reciprocally connected with several other hypothalamic nuclei, the brainstem, and reward pathways. The hypophysial pars tuberalis (PT) is attached to the ME and the HPV. The PT, an important interface of the neuroendocrine system, is mandatory for the control of seasonal functions. This contribution provides an update of our knowledge about the ARC-ME complex and the PT which, inter alia, is needed to understand the pathophysiology of metabolic diseases and reproduction.


Subject(s)
Arcuate Nucleus of Hypothalamus , Median Eminence , Humans , Hypothalamus , Neurons , Pituitary Gland
7.
J Pineal Res ; 70(3): e12724, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33615553

ABSTRACT

Cancer-related fatigue (CRF) and stress are common symptoms in cancer patients and represent early side effects of cancer treatment which affect the life quality of the patients. CRF may partly depend on disruption of the circadian rhythm. Locomotor activity and corticosterone rhythms are two important circadian outputs which can be used to analyze possible effects on the circadian function during cancer development and treatment. The present study analyzes the relationship between locomotor activity rhythm, corticosterone levels, hepatocellular carcinoma (HCC) development, and radiotherapy treatment in a mouse model. HCC was induced in mice by single injection of diethylnitrosamine (DEN) and chronic treatment of phenobarbital in drinking water. Another group received chronic phenobarbital treatment only. Tumor bearing animals were divided randomly into four groups irradiated at four different Zeitgeber time points. Spontaneous locomotor activity was recorded continuously; serum corticosterone levels and p-ERK immunoreaction in the suprachiasmatic nucleus (SCN) were investigated. Phenobarbital treated mice showed damped corticosterone levels and a less stable 24 hours activity rhythm as well as an increase in activity during the light phase, reminiscent of sleep disruption. The tumor mice showed an increase in corticosterone level during the inactive phase and decreased activity during the dark phase, reminiscent of CRF. After irradiation, corticosterone levels were further increased and locomotor activity rhythms were disrupted. Lowest corticosterone levels were observed after irradiation during the early light phase; thus, this time might be the best to apply radiotherapy in order to minimize side effects.


Subject(s)
Activity Cycles , Behavior, Animal , Carcinoma, Hepatocellular/radiotherapy , Circadian Rhythm , Corticosterone/blood , Liver Neoplasms, Experimental/radiotherapy , Locomotion , Suprachiasmatic Nucleus/physiopathology , Animals , Biomarkers/blood , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/physiopathology , Chronotherapy , Diethylnitrosamine , Disease Progression , Extracellular Signal-Regulated MAP Kinases/metabolism , Liver Neoplasms, Experimental/blood , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/physiopathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Period Circadian Proteins/genetics , Phenobarbital , Phosphorylation , Suprachiasmatic Nucleus/metabolism , Time Factors
8.
Int J Cancer ; 148(1): 226-237, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32700769

ABSTRACT

Hepatocellular carcinoma (HCC) is highly resistant to anticancer therapy and novel therapeutic strategies are needed. Chronotherapy may become a promising approach because it may improve the efficacy of antimitotic radiation and chemotherapy by considering timing of treatment. To date little is known about time-of-day dependent changes of proliferation and DNA damage in HCC. Using transgenic c-myc/transforming growth factor (TGFα) mice as HCC animal model, we immunohistochemically demonstrated Ki67 as marker for proliferation and γ-H2AX as marker for DNA damage in HCC and surrounding healthy liver (HL). Core clock genes (Per1, Per2, Cry1, Cry2, Bmal 1, Rev-erbα and Clock) were examined by qPCR. Data were obtained from samples collected ex vivo at four different time points and from organotypic slice cultures (OSC). Significant differences were found between HCC and HL. In HCC, the number of Ki67 immunoreactive cells showed two peaks (ex vivo: ZT06 middle of day and ZT18 middle of night; OSC: CT04 and CT16). In ex vivo samples, the number of γ-H2AX positive cells in HCC peaked at ZT18 (middle of the night), while in OSC their number remained high during subjective day and night. In both HCC and HL, clock gene expression showed a time-of-day dependent expression ex vivo but no changes in OSC. The expression of Per2 and Cry1 was significantly lower in HCC than in HL. Our data support the concept of chronotherapy of HCC. OSC may become useful to test novel cancer therapies.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Neoplasms, Experimental/genetics , Period Circadian Proteins/genetics , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Cell Proliferation/genetics , Chlorides/administration & dosage , Chlorides/toxicity , Chronotherapy , DNA Damage , Gene Expression Regulation, Neoplastic , Humans , Liver/pathology , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Mice , Mice, Transgenic , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/therapy , Photoperiod , Proto-Oncogene Proteins c-myc/genetics , Transforming Growth Factor alpha/genetics , Tumor Cells, Cultured , Zinc Compounds/administration & dosage , Zinc Compounds/toxicity
9.
J Biol Rhythms ; 35(1): 58-71, 2020 02.
Article in English | MEDLINE | ID: mdl-31625428

ABSTRACT

Locomotor activity patterns of laboratory mice are widely used to analyze circadian mechanisms, but most investigations have been performed under standardized laboratory conditions. Outdoors, animals are exposed to daily changes in photoperiod and other abiotic cues that might influence their circadian system. To investigate how the locomotor activity patterns under outdoor conditions compare to controlled laboratory conditions, we placed 2 laboratory mouse strains (melatonin-deficient C57Bl and melatonin-proficient C3H) in the garden of the Dr. Senckenbergische Anatomie in Frankfurt am Main. The mice were kept singly in cages equipped with an infrared locomotion detector, a hiding box, nesting material, and with food and water ad libitum. The locomotor activity of each mouse was recorded for 1 year, together with data on ambient temperature, light, and humidity. Chronotype, chronotype stability, total daily activity, duration of the activity period, and daily diurnality indices were determined from the actograms. C3H mice showed clear seasonal differences in the chronotype, its stability, the total daily activity, and the duration of the activity period. These pronounced seasonal differences were not observed in the C57Bl. In both strains, the onset of the main activity period was mainly determined by the evening dusk, whereas the offset was influenced by the ambient temperature. The actograms did not reveal infra-, ultradian, or lunar rhythms or a weekday/weekend pattern. Under outdoor conditions, the 2 strains retained their nocturnal locomotor identity as observed in the laboratory. Our results indicate that the chronotype displays a seasonal plasticity that may depend on the melatoninergic system. Photoperiod and ambient temperature are the most potent abiotic entraining cues. The timing of the evening dusk mainly affects the onset of the activity period; the ambient temperature during this period influences the latter's duration. Humidity, overall light intensities, and human activities do not affect the locomotor behavior.


Subject(s)
Behavior, Animal , Circadian Rhythm , Environment , Locomotion , Melatonin/physiology , Seasons , Animals , Light , Male , Melatonin/deficiency , Mice, Inbred C3H , Mice, Inbred C57BL , Photoperiod , Stress, Physiological , Temperature
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 304-311, 2019 03.
Article in English | MEDLINE | ID: mdl-30557628

ABSTRACT

Key homeostatic functions are regulated in a diurnal manner and a miss-alignment of such rhythms is believed to contribute to the pathophysiology of several diseases. Signaling sphingolipids (SLs) in plasma such as sphingosine 1-phosphate control lymphocytic trafficking, vascular reactivity and platelet activity, physiological functions all of which display a diurnal rhythm themselves. However, the rhythmicity of SL metabolism in plasma and its potential causes have not been sufficiently investigated so far. Therefore, we analyzed blood of mice and healthy adult human subjects by targeted tandem mass-spectrometry at different time points. In order to investigate the influence of the synchronizing hormone melatonin, we compared melatonin proficient C3H/HeN wildtype mice (C3H) with melatonin receptor-1/2 double knockout mice (MT1/2-/-) and melatonin deficient C57BL/6J mice. We found a strong upregulation of plasma S1P with the beginning of the light period in C3H but not in MT1/2-/- or C57BL/6J mice. Accordingly, our study revealed an upregulation of sphingosine 1-phosphate (S1P d18:1) and sphinganine 1-phosphate (S1P d18:0) with the beginning of the light period in humans. Furthermore, plasma S1P d18:1 and S1P d18:0 were inversely correlated with the respective concentrations in platelets, pointing to a possible involvement of platelet SL metabolism. In humans, the diurnal rhythm of SLs was not associated with changes of SL-binding proteins or counts of cellular SL sources. Overall, this study indicates a physiological rhythmicity of plasma and platelet SL metabolism, likely mediated by melatonin, with potentially important implications for physiological diurnal rhythms and the regulation of SL metabolism and its functions.


Subject(s)
Circadian Rhythm/physiology , Sphingolipids/metabolism , Adult , Animals , Blood Platelets/physiology , Chromatography, Liquid/methods , Female , Humans , Lysophospholipids/metabolism , Lysophospholipids/physiology , Male , Melatonin/metabolism , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Plasma/metabolism , Signal Transduction/physiology , Sphingolipids/blood , Sphingolipids/physiology , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine/physiology , Tandem Mass Spectrometry/methods
11.
Neuroendocrinology ; 107(2): 158-166, 2018.
Article in English | MEDLINE | ID: mdl-29949802

ABSTRACT

BACKGROUND/AIMS: Zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis are regulated by melatonin receptor (MT)-mediated signaling in the adult hippocampus and hypothalamic-hypophyseal system. There are two G-protein-coupled MT subtypes, MT1 and MT2. Therefore, the present study examined which MT subtype is required for the regulation of ZT-dependent changes in cell proliferation and/or apoptosis in the adult murine brain and pituitary. METHODS: Adult melatonin-proficient (C3H) mice with targeted deletion of MT1 (MT1 KO) or MT2 (MT2 KO) were adapted to a 12-h light/12-h dark photoperiod and sacrificed at ZT00, ZT06, ZT12, and ZT18. Immunohistochemistry for Ki67 or activated caspase-3 served to quantify proliferating and apoptotic cells in the hippocampal subgranular zone (SGZ) and granule cell layer, the hypothalamic median eminence (ME), and the hypophyseal pars tuberalis. RESULTS: ZT-dependent changes in cell proliferation were found exclusively in the SGZ and ME of MT1 KO mice, while apoptosis showed no ZT-dependent changes in the regions analyzed, neither in MT1 nor in MT2 KO mice. Comparison with our previous studies in C3H mice with functional MTs and MT1/2 KO mice revealed that MT2-mediated signaling is required and sufficient for ZT-dependent changes in cell proliferation in the SGZ and ME, while ZT-dependent changes in apoptosis require signaling from both MT subtypes. CONCLUSIONS: Our results indicate that generation and timing of ZT-dependent changes in cell proliferation and apoptosis by melatonin require different MT subtype constellations and emphasize the importance to shed light on the specific function of each receptor subtype in different tissues and physiological conditions.


Subject(s)
Apoptosis/physiology , Brain/metabolism , Cell Proliferation/physiology , Receptors, Melatonin/metabolism , Signal Transduction/physiology , Animals , Male , Mice , Mice, Knockout
12.
Int J Mol Sci ; 19(6)2018 Jun 03.
Article in English | MEDLINE | ID: mdl-29865270

ABSTRACT

Parkinson's disease (PD) is characterized by distinct motor and non-motor symptoms. Sleep disorders are the most frequent and challenging non-motor symptoms in PD patients, and there is growing evidence that they are a consequence of disruptions within the circadian system. PD is characterized by a progressive degeneration of the dorsal vagal nucleus and midbrain dopaminergic neurons together with an imbalance of many other neurotransmitters. Mutations in α-synuclein (SNCA), a protein modulating SNARE complex-dependent neurotransmission, trigger dominantly inherited PD variants and sporadic cases of PD. The A53T SNCA missense mutation is associated with an autosomal dominant early-onset familial PD. To test whether this missense mutation affects the circadian system, we analyzed the spontaneous locomotor behavior of non-transgenic wildtype mice and transgenic mice overexpressing mutant human A53T α-synuclein (A53T). The mice were subjected to entrained- and free-running conditions as well as to experimental jet lag. Furthermore, the vesicular glutamate transporter 2 (VGLUT2) in the suprachiasmatic nucleus (SCN) was analyzed by immunohistochemistry. Free-running circadian rhythm and, thus, circadian rhythm generation, were not affected in A53T mice. A53T mice entrained to the light⁻dark cycle, however, with an advanced phase angle of 2.65 ± 0.5 h before lights off. Moreover, re-entrainment after experimental jet lag was impaired in A53T mice. Finally, VGLUT2 immunoreaction was reduced in the SCN of A53T mice. These data suggest an impaired light entrainment of the circadian system in A53T mice.


Subject(s)
Circadian Clocks , Disease Models, Animal , Locomotion , Parkinson Disease/metabolism , Synaptic Transmission , alpha-Synuclein/physiology , Animals , Gene Expression Regulation , Mice , Mice, Transgenic , Mutation , Parkinson Disease/physiopathology , Photic Stimulation , Up-Regulation , alpha-Synuclein/genetics
13.
PLoS One ; 13(2): e0193015, 2018.
Article in English | MEDLINE | ID: mdl-29447241

ABSTRACT

Tumor progression largely depends on the presence of alternatively polarized (M2) tumor-associated macrophages (TAMs), whereas the classical M1-polarized macrophages can promote anti-tumorigenic immune responses. Thus, selective inhibition of M2-TAMs is a desirable anti-cancer approach in highly resistant tumor entities such as hepatocellular carcinoma (HCC) or breast cancer. We here examined whether a peptide that selectively binds to and is internalized by in vitro-differentiated murine M2 macrophages as compared to M1 macrophages, termed M2pep, could be used to selectively target TAMs in HCC and breast carcinoma. We confirmed selectivity of M2pep for in vitro M2 polarized macrophages. Upon incubation of suspended mixed 4T1 tumor cells with M2pep, high amounts of the TAMs were found to be associated with M2pep, whereas in mixed tumor cell suspensions from two HCC mouse models, M2pep showed only low-degree binding to TAMs. M2pep also showed low-degree targeting of liver macrophages. This indicates that the TAMs in different tumor entities show different targeting of M2pep and that M2pep is a very promising approach to develop selective M2-TAM-targeting in tumor entities containing M2-TAMs with significant amounts of the so far elusive M2pep receptor(s).


Subject(s)
Liver Neoplasms, Experimental/drug therapy , Macrophages/drug effects , Peptides/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Differentiation , Cell Line, Tumor , Disease Progression , Female , Genes, myc , Hep G2 Cells , Humans , Liver/drug effects , Liver/pathology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Macrophages/classification , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic , Peptides/pharmacokinetics , Protein Binding , Transforming Growth Factor alpha/genetics , Xenograft Model Antitumor Assays
14.
Gen Comp Endocrinol ; 258: 213-214, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29203389
16.
Gen Comp Endocrinol ; 258: 236-243, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28511899

ABSTRACT

Seasonal (circannual) rhythms play an important role for the control of body functions (reproduction, metabolism, immune responses) in nearly all living organisms. Also humans are affected by the seasons with regard to immune responses and mental functions, the seasonal affective disorder being one of the most prominent examples. The hypophysial pars tuberalis (PT), an important interface between the hypophysial pars distalis and neuroendocrine centers in the brain, plays an essential role in the regulation of seasonal functions and may even be the seat of the circannual clock. Photoperiodic signals provide a major input to the PT. While the perception of these signals involves extraocular photoreceptors in non-mammalian species (birds, fish), mammals perceive photoperiodic signals exclusively in the retina. A multisynaptic pathway connects the retina with the pineal organ where photoperiodic signals are translated into the neurohormone melatonin that is rhythmically produced night by night and encodes the length of the night. Melatonin controls the functional activity of the mammalian PT by acting upon MT1 melatonin receptors. The PT sends its output signals via retrograde and anterograde pathways. The retrograde pathway targetting the hypothalamus employs TSH as messenger and controls a local hypothalamic T3 system. As discovered in Japanese quail, TSH triggers molecular cascades mediating thyroid hormone conversion in the ependymal cell layer of the infundibular recess of the third ventricle. The local accumulation of T3 in the mediobasal hypothalamus (MBH) appears to activate the gonadal axis by affecting the neuro-glial interaction between GnRH terminals and tanycytes in the median eminence. This retrograde pathway is conserved in photoperiodic mammals (sheep and hamsters), and even in non-photoperiodic laboratory mice provided that they are capable to synthesize melatonin. The anterograde pathway is implicated in the control of prolactin secretion, targets cells in the PD and supposedly employs small molecules as signal substances collectively denominated as "tuberalins". Several "tuberalin" candidates have been proposed, such as tachykinins, the secretory protein TAFA and endocannabinoids (EC). The PT-intrinsic EC system was first demonstrated in Syrian hamsters and shown to respond to photoperiodic changes. Subsequently, the EC system was also demonstrated in the PT of mice, rats and humans. To date, 2-arachidonoylglycerol (2-AG) appears as the most important endocannabinoid from the PT. Likely targets for the EC are folliculo-stellate cells that contain the CB1 receptor and appear to contact lactotroph cells. The CB1 receptor was also found on corticotroph cells which appear as a further target of the EC. Recently, the CB1 receptor was also localized to CRF-containing nerve fibers running in the outer zone of the median eminence. This finding suggests that the EC system of the PT contributes not only to the anterograde, but also to the retrograde pathway. Taken together, the results support the concept that the PT transmits its signals via a "cocktail" of messenger molecules which operate also in other brain areas and systems rather than through PT-specific "tuberalins". Furthermore, they may attribute a novel function to the PT, namely the modulation of the stress response and immune functions.


Subject(s)
Circadian Rhythm/physiology , Pituitary Gland/metabolism , Pituitary Gland/physiology , Animals , Coturnix , Cricetinae , Humans , Hypothalamus/metabolism , Melatonin/metabolism , Mice , Photoperiod , Pituitary Gland/cytology , Rats , Seasons , Sheep , Signal Transduction/physiology
17.
Gen Comp Endocrinol ; 258: 215-221, 2018 03 01.
Article in English | MEDLINE | ID: mdl-28533170

ABSTRACT

In mammals, the rhythmic secretion of melatonin from the pineal gland is driven by the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. The robust nightly peak of melatonin secretion is an output signal of the circadian clock and is supposed to deliver the circadian message to the whole of the organism. Since the circadian system regulates many behavioral and physiological processes, its disruption by external (shift-work, jet-lag) or internal desynchronization (blindness, aging) causes many different health problems. Externally applied melatonin is used in humans as a chronobiotic drug to treat desynchronization and circadian disorders, and the success of these treatments does, at first glance, underline the supposed pivotal role of melatonin in the synchronization of the circadian system. On the other hand, pinealectomy in experimental animals and humans does not abolish their rhythms of rest and activity. Furthermore, mice with deficient melatoninergic systems neither display overt defects in their rhythmic behavior nor do they show obvious signs of disease susceptibility, let alone premature mortality. During the last years, our laboratory has investigated several mouse stains with intact or compromised internal melatonin signaling systems in order to better understand the physiological role of the melatoninergic system. These and other investigations which will be reviewed in the present contribution confirm the synchronizing effect of endogenous melatonin and the melatoninergic system. However, these effects are subtle. Thus melatonin does not appear as the master of internal synchronization, but as one component in a cocktail of synchronizing agents.


Subject(s)
Circadian Clocks/drug effects , Circadian Rhythm/drug effects , Melatonin/pharmacology , Animals , Circadian Rhythm/physiology , Humans , Hypothalamus/drug effects , Jet Lag Syndrome/physiopathology , Locomotion/drug effects , Male , Mice , Photoperiod , Pineal Gland/drug effects , Suprachiasmatic Nucleus/physiology
19.
Ann Neurol ; 81(6): 898-903, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28439961

ABSTRACT

Brains from patients with Parkinson disease or dementia with Lewy bodies show aggregation of alpha-synuclein in precerebellar brainstem structures. Furthermore, patients exhibit resting tremor, unstable gait, and impaired balance, which may be associated with cerebellar dysfunction. Therefore, we screened the cerebella of 12 patients with alpha-synucleinopathies for neuropathological changes. Cerebellar nuclei and neighboring white matter displayed numerous aggregates, whereas lobules were mildly affected. Cerebellar aggregation pathology may suggest a prionlike spread originating from affected precerebellar structures, and the high homogeneity between patients with dementia with Lewy bodies and Parkinson disease shows that both diseases likely belong to the same neuropathological spectrum. Ann Neurol 2017;81:898-903.


Subject(s)
Cerebellar Diseases , Lewy Body Disease , alpha-Synuclein/metabolism , Cerebellar Diseases/metabolism , Cerebellar Diseases/pathology , Humans , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology
20.
Neurochem Res ; 42(6): 1795-1809, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28243788

ABSTRACT

Astrocytes in vivo extend thin processes termed peripheral astrocyte processes (PAPs), in particular around synapses where they can mediate glia-neuronal communication. The relation of PAPs to synapses is not based on coincidence, but it is not clear which stimuli and mechanisms lead to their formation and are active during process extension/ retraction in response to neuronal activity. Also, the molecular basis of the extremely fine PAP morphology (often 50 to 100 nm) is not understood. These open questions can be best investigated under in vitro conditions studying glial filopodia. We have previously analyzed filopodial mechanisms (Lavialle et al. PNAS 108:12915) applying an automated method for filopodia morphometry, which is now described in greater detail. The Filopodia Specific Shape Factor (FSSF) developed integrates number and length of filopodia. It quantifies filopodia independent of overall astrocytic shape or size, which can be intricate in itself. The algorithm supplied here permits automated image processing and measurements using ImageJ. Cells have to be sampled in higher numbers to obtain significant results. We validate the FSSF, and characterize the systematic influence of thresholding and camera pixel grid on measurements. We provide exemplary results of substance-induced filopodia dynamics (glutamate, mGluR agonists, EGF), and show that filopodia formation is highly sensitive to medium pH (CO2) and duration of cell culture. Although the FSSF was developed to study astrocyte filopodia with focus on the perisynaptic glial sheath, we expect that this parameter can also be applied to neuronal growth cones, non-neural cell types, or cell lines.


Subject(s)
Algorithms , Cell Movement/physiology , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Pseudopodia/physiology , Animals , Animals, Newborn , Cell Count/methods , Cells, Cultured , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...