Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
2.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398009

ABSTRACT

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.

3.
Neuron ; 111(10): 1547-1563.e9, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37015225

ABSTRACT

The ability to optically image cellular transmembrane voltages at millisecond-timescale resolutions can offer unprecedented insight into the function of living brains in behaving animals. Here, we present a point mutation that increases the sensitivity of Ace2 opsin-based voltage indicators. We use the mutation to develop Voltron2, an improved chemigeneic voltage indicator that has a 65% higher sensitivity to single APs and 3-fold higher sensitivity to subthreshold potentials than Voltron. Voltron2 retained the sub-millisecond kinetics and photostability of its predecessor, although with lower baseline fluorescence. In multiple in vitro and in vivo comparisons with its predecessor across multiple species, we found Voltron2 to be more sensitive to APs and subthreshold fluctuations. Finally, we used Voltron2 to study and evaluate the possible mechanisms of interneuron synchronization in the mouse hippocampus. Overall, we have discovered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-based sensors, improving their voltage reporting capability.


Subject(s)
Angiotensin-Converting Enzyme 2 , Rhodopsin , Mice , Animals , Action Potentials/physiology , Rhodopsin/genetics , Neurons/physiology , Mutation/genetics
4.
Nature ; 615(7954): 884-891, 2023 03.
Article in English | MEDLINE | ID: mdl-36922596

ABSTRACT

Calcium imaging with protein-based indicators1,2 is widely used to follow neural activity in intact nervous systems, but current protein sensors report neural activity at timescales much slower than electrical signalling and are limited by trade-offs between sensitivity and kinetics. Here we used large-scale screening and structure-guided mutagenesis to develop and optimize several fast and sensitive GCaMP-type indicators3-8. The resulting 'jGCaMP8' sensors, based on the calcium-binding protein calmodulin and a fragment of endothelial nitric oxide synthase, have ultra-fast kinetics (half-rise times of 2 ms) and the highest sensitivity for neural activity reported for a protein-based calcium sensor. jGCaMP8 sensors will allow tracking of large populations of neurons on timescales relevant to neural computation.


Subject(s)
Calcium Signaling , Calcium , Calmodulin , Neurons , Nitric Oxide Synthase Type III , Peptide Fragments , Calcium/analysis , Calcium/metabolism , Calmodulin/metabolism , Neurons/metabolism , Kinetics , Nitric Oxide Synthase Type III/chemistry , Nitric Oxide Synthase Type III/metabolism , Time Factors , Peptide Fragments/chemistry , Peptide Fragments/metabolism
5.
Elife ; 122023 02 23.
Article in English | MEDLINE | ID: mdl-36820523

ABSTRACT

Precise, repeatable genetic access to specific neurons via GAL4/UAS and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which generally lack the single-cell resolution required for reliable cell type identification. Here, we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 74,000 such adult central nervous systems. An anticipated use of this resource is to bridge the gap between neurons identified by electron or light microscopy. Identifying individual neurons that make up each GAL4 expression pattern improves the prediction of split-GAL4 combinations targeting particular neurons. To this end, we have made the images searchable on the NeuronBridge website. We demonstrate the potential of NeuronBridge to rapidly and effectively identify neuron matches based on morphology across imaging modalities and datasets.


Subject(s)
Drosophila Proteins , Neurosciences , Animals , Drosophila/metabolism , Neurons/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Central Nervous System/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Elife ; 122023 01 20.
Article in English | MEDLINE | ID: mdl-36661218

ABSTRACT

The central nucleus of the amygdala (CEA) is a brain region that integrates external and internal sensory information and executes innate and adaptive behaviors through distinct output pathways. Despite its complex functions, the diversity of molecularly defined neuronal types in the CEA and their contributions to major axonal projection targets have not been examined systematically. Here, we performed single-cell RNA-sequencing (scRNA-seq) to classify molecularly defined cell types in the CEA and identified marker genes to map the location of these neuronal types using expansion-assisted iterative fluorescence in situ hybridization (EASI-FISH). We developed new methods to integrate EASI-FISH with 5-plex retrograde axonal labeling to determine the spatial, morphological, and connectivity properties of ~30,000 molecularly defined CEA neurons. Our study revealed spatiomolecular organization of the CEA, with medial and lateral CEA associated with distinct molecularly defined cell families. We also found a long-range axon projection network from the CEA, where target regions receive inputs from multiple molecularly defined cell types. Axon collateralization was found primarily among projections to hindbrain targets, which are distinct from forebrain projections. This resource reports marker gene combinations for molecularly defined cell types and axon-projection types, which will be useful for selective interrogation of these neuronal populations to study their contributions to the diverse functions of the CEA.


Subject(s)
Central Amygdaloid Nucleus , Central Amygdaloid Nucleus/physiology , In Situ Hybridization, Fluorescence , Neurons/physiology , Axons , Neural Pathways/metabolism
7.
Curr Biol ; 32(5): 1189-1196.e6, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35090590

ABSTRACT

Similar to many insect species, Drosophila melanogaster is capable of maintaining a stable flight trajectory for periods lasting up to several hours.1,2 Because aerodynamic torque is roughly proportional to the fifth power of wing length,3 even small asymmetries in wing size require the maintenance of subtle bilateral differences in flapping motion to maintain a stable path. Flies can even fly straight after losing half of a wing, a feat they accomplish via very large, sustained kinematic changes to both the damaged and intact wings.4 Thus, the neural network responsible for stable flight must be capable of sustaining fine-scaled control over wing motion across a large dynamic range. In this study, we describe an unusual type of descending neuron (DNg02) that projects directly from visual output regions of the brain to the dorsal flight neuropil of the ventral nerve cord. Unlike many descending neurons, which exist as single bilateral pairs with unique morphology, there is a population of at least 15 DNg02 cell pairs with nearly identical shape. By optogenetically activating different numbers of DNg02 cells, we demonstrate that these neurons regulate wingbeat amplitude over a wide dynamic range via a population code. Using two-photon functional imaging, we show that DNg02 cells are responsive to visual motion during flight in a manner that would make them well suited to continuously regulate bilateral changes in wing kinematics. Collectively, we have identified a critical set of descending neurons that provides the sensitivity and dynamic range required for flight control.


Subject(s)
Drosophila , Flight, Animal , Animals , Biomechanical Phenomena , Drosophila/physiology , Drosophila melanogaster/physiology , Flight, Animal/physiology , Models, Biological , Neurons , Wings, Animal/physiology
8.
Cell ; 184(26): 6361-6377.e24, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34875226

ABSTRACT

Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.


Subject(s)
Hypothalamic Area, Lateral/metabolism , In Situ Hybridization, Fluorescence , Animals , Biomarkers/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hypothalamic Area, Lateral/cytology , Imaging, Three-Dimensional , Male , Mice, Inbred C57BL , Neurons/metabolism , Neuropeptides/metabolism , Proto-Oncogene Proteins c-fos/metabolism , RNA/metabolism , RNA-Seq , Single-Cell Analysis , Transcription, Genetic
9.
Nature ; 599(7883): 141-146, 2021 11.
Article in English | MEDLINE | ID: mdl-34616042

ABSTRACT

Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM)1. We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.


Subject(s)
Microscopy, Electron, Scanning/methods , Microscopy, Electron, Scanning/standards , Organelles/ultrastructure , Animals , Biomarkers/analysis , COS Cells , Cell Size , Chlorocebus aethiops , Datasets as Topic , Deep Learning , Endoplasmic Reticulum , HeLa Cells , Humans , Information Dissemination , Microscopy, Fluorescence , Microtubules , Reproducibility of Results , Ribosomes
10.
MicroPubl Biol ; 20212021.
Article in English | MEDLINE | ID: mdl-34355139

ABSTRACT

Infective juveniles of the insect-parastic nematode Steinernema carpocapsae canjump greater than 6 times their height, a striking evolved novelty in some species of this genus. Using high-speed videography, we observed the kinematics of Steinernema carpocapsae spontaneousjumping behavior. Our analysis places a lower bound on the velocity and acceleration of these worms.

11.
J Biomol Tech ; 32(3): 121-133, 2021 09.
Article in English | MEDLINE | ID: mdl-35027870

ABSTRACT

The worldwide coronavirus disease 2019 pandemic has had devastating effects on health, healthcare infrastructure, social structure, and economics. One of the limiting factors in containing the spread of this virus has been the lack of widespread availability of fast, inexpensive, and reliable methods for testing of individuals. Frequent screening for infected and often asymptomatic people is a cornerstone of pandemic management plans. Here, we introduce 2 pH-sensitive "LAMPshade" dyes as novel readouts in an isothermal Reverse Transcriptase Loop-mediated isothermal AMPlification amplification assay for severe acute respiratory syndrome coronavirus 2 RNA. The resulting JaneliaLAMP assay is robust, simple, inexpensive, and has low technical requirements, and we describe its use and performance in direct testing of contrived and clinical samples without RNA extraction.


Subject(s)
COVID-19 , RNA, Viral , Coloring Agents , Humans , Hydrogen-Ion Concentration , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity , Social Structure
12.
Neuron ; 107(6): 1071-1079.e2, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32931755

ABSTRACT

Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC.


Subject(s)
Drosophila melanogaster/cytology , Ganglia, Invertebrate/cytology , Nerve Net/cytology , Neurons/classification , Terminology as Topic , Animals , Cell Lineage , Drosophila melanogaster/physiology , Ganglia, Invertebrate/physiology , Nerve Net/physiology , Neurons/cytology , Neurons/physiology
13.
Nat Neurosci ; 22(11): 1945, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31576055

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Nat Neurosci ; 22(11): 1925-1935, 2019 11.
Article in English | MEDLINE | ID: mdl-31527803

ABSTRACT

The thalamus is the central communication hub of the forebrain and provides the cerebral cortex with inputs from sensory organs, subcortical systems and the cortex itself. Multiple thalamic regions send convergent information to each cortical region, but the organizational logic of thalamic projections has remained elusive. Through comprehensive transcriptional analyses of retrogradely labeled thalamic neurons in adult mice, we identify three major profiles of thalamic pathways. These profiles exist along a continuum that is repeated across all major projection systems, such as those for vision, motor control and cognition. The largest component of gene expression variation in the mouse thalamus is topographically organized, with features conserved in humans. Transcriptional differences between these thalamic neuronal identities are tied to cellular features that are critical for function, such as axonal morphology and membrane properties. Molecular profiling therefore reveals covariation in the properties of thalamic pathways serving all major input modalities and output targets, thus establishing a molecular framework for understanding the thalamus.


Subject(s)
Cerebral Cortex/anatomy & histology , Thalamus/anatomy & histology , Action Potentials , Animals , Atlases as Topic , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Humans , Mice , Mice, Transgenic , Neural Pathways/anatomy & histology , Neural Pathways/metabolism , Neural Pathways/physiology , Thalamus/metabolism , Thalamus/physiology , Transcriptome
15.
Cell ; 179(1): 268-281.e13, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31495573

ABSTRACT

Neuronal cell types are the nodes of neural circuits that determine the flow of information within the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential descriptor of cell type and reveals how individual neurons route their output across the brain. Despite the importance of morphology, few projection neurons in the mouse brain have been reconstructed in their entirety. Here we present a robust and efficient platform for imaging and reconstructing complete neuronal morphologies, including axonal arbors that span substantial portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons constitute more than 85 meters of axonal length and are available in a searchable online database. Axonal shapes revealed previously unknown subtypes of projection neurons and suggest organizational principles of long-range connectivity.


Subject(s)
Brain/cytology , Brain/diagnostic imaging , Neurites/physiology , Pyramidal Tracts/physiology , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton/methods , Software , Transfection
16.
Elife ; 72018 06 26.
Article in English | MEDLINE | ID: mdl-29943729

ABSTRACT

In most animals, the brain makes behavioral decisions that are transmitted by descending neurons to the nerve cord circuitry that produces behaviors. In insects, only a few descending neurons have been associated with specific behaviors. To explore how descending neurons control an insect's movements, we developed a novel method to systematically assay the behavioral effects of activating individual neurons on freely behaving terrestrial D. melanogaster. We calculated a two-dimensional representation of the entire behavior space explored by these flies, and we associated descending neurons with specific behaviors by identifying regions of this space that were visited with increased frequency during optogenetic activation. Applying this approach across a large collection of descending neurons, we found that (1) activation of most of the descending neurons drove stereotyped behaviors, (2) in many cases multiple descending neurons activated similar behaviors, and (3) optogenetically activated behaviors were often dependent on the behavioral state prior to activation.


Subject(s)
Brain/physiology , Drosophila melanogaster/physiology , Efferent Pathways/physiology , Locomotion/physiology , Neurons/physiology , Spatial Behavior/physiology , Animals , Behavior, Animal , Biological Assay , Brain/anatomy & histology , Brain/cytology , Brain Mapping/methods , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Efferent Pathways/anatomy & histology , Efferent Pathways/cytology , Genes, Reporter , Neurons/cytology , Optogenetics/methods , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Elife ; 72018 06 26.
Article in English | MEDLINE | ID: mdl-29943730

ABSTRACT

In most animals, the brain controls the body via a set of descending neurons (DNs) that traverse the neck. DN activity activates, maintains or modulates locomotion and other behaviors. Individual DNs have been well-studied in species from insects to primates, but little is known about overall connectivity patterns across the DN population. We systematically investigated DN anatomy in Drosophila melanogaster and created over 100 transgenic lines targeting individual cell types. We identified roughly half of all Drosophila DNs and comprehensively map connectivity between sensory and motor neuropils in the brain and nerve cord, respectively. We find the nerve cord is a layered system of neuropils reflecting the fly's capability for two largely independent means of locomotion -- walking and flight -- using distinct sets of appendages. Our results reveal the basic functional map of descending pathways in flies and provide tools for systematic interrogation of neural circuits.


Subject(s)
Brain/physiology , Drosophila melanogaster/physiology , Efferent Pathways/physiology , Locomotion/physiology , Neurons/physiology , Neuropil/physiology , Animals , Animals, Genetically Modified , Brain/anatomy & histology , Brain/cytology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Genes, Reporter , Neurons/cytology , Neuropil/cytology , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Cell ; 170(2): 393-406.e28, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28709004

ABSTRACT

Assigning behavioral functions to neural structures has long been a central goal in neuroscience and is a necessary first step toward a circuit-level understanding of how the brain generates behavior. Here, we map the neural substrates of locomotion and social behaviors for Drosophila melanogaster using automated machine-vision and machine-learning techniques. From videos of 400,000 flies, we quantified the behavioral effects of activating 2,204 genetically targeted populations of neurons. We combined a novel quantification of anatomy with our behavioral analysis to create brain-behavior correlation maps, which are shared as browsable web pages and interactive software. Based on these maps, we generated hypotheses of regions of the brain causally related to sensory processing, locomotor control, courtship, aggression, and sleep. Our maps directly specify genetic tools to target these regions, which we used to identify a small population of neurons with a role in the control of walking.


Subject(s)
Brain Mapping/methods , Drosophila melanogaster/physiology , Animals , Behavior, Animal , Female , Locomotion , Male , Software
19.
Sci Rep ; 6: 27000, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27255169

ABSTRACT

Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system.


Subject(s)
Drosophila melanogaster/physiology , Interneurons/physiology , Animals , Decision Making , Distance Perception , Drosophila melanogaster/cytology , Female , Formative Feedback , Male , Motor Activity , Optic Lobe, Nonmammalian/cytology , Optic Lobe, Nonmammalian/physiology , Walking
20.
Bioinspir Biomim ; 10(5): 056014, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26448267

ABSTRACT

Natural substrates like sand, soil, leaf litter and snow vary widely in penetration resistance. To search for principles of appendage design in robots and animals that permit high performance on such flowable ground, we developed a ground control technique by which the penetration resistance of a dry granular substrate could be widely and rapidly varied. The approach was embodied in a device consisting of an air fluidized bed trackway in which a gentle upward flow of air through the granular material resulted in a decreased penetration resistance. As the volumetric air flow, Q, increased to the fluidization transition, the penetration resistance decreased to zero. Using a bio-inspired hexapedal robot as a physical model, we systematically studied how locomotor performance (average forward speed, v(x)) varied with ground penetration resistance and robot leg frequency. Average robot speed decreased with increasing Q, and decreased more rapidly for increasing leg frequency, ω. A universal scaling model revealed that the leg penetration ratio (foot pressure relative to penetration force per unit area per depth and leg length) determined v(x) for all ground penetration resistances and robot leg frequencies. To extend our result to include continuous variation of locomotor foot pressure, we used a resistive force theory based terradynamic approach to perform numerical simulations. The terradynamic model successfully predicted locomotor performance for low resistance granular states. Despite variation in morphology and gait, the performance of running lizards, geckos and crabs on flowable ground was also influenced by the leg penetration ratio. In summary, appendage designs which reduce foot pressure can passively maintain minimal leg penetration ratio as the ground weakens, and consequently permits maintenance of effective locomotion over a range of terradynamically challenging surfaces.


Subject(s)
Biomimetics/instrumentation , Computer-Aided Design , Extremities/physiology , Gait/physiology , Models, Biological , Robotics/instrumentation , Animals , Computer Simulation , Equipment Design , Equipment Failure Analysis , Motion , Rheology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...