Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 3086, 2019.
Article in English | MEDLINE | ID: mdl-32038630

ABSTRACT

Immunoglobulin superfamily member (IgSF) proteins play a significant role in regulating immune responses with surface expression on all immune cell subsets, making the IgSF an attractive family of proteins for therapeutic targeting in human diseases. We have developed a directed evolution platform capable of engineering IgSF domains to increase affinities for cognate ligands and/or introduce binding to non-cognate ligands. Using this scientific platform, ICOSL domains have been derived with enhanced binding to ICOS and with additional high-affinity binding to the non-cognate receptor, CD28. Fc-fusion proteins containing these engineered ICOSL domains significantly attenuate T cell activation in vitro and in vivo and can inhibit development of inflammatory diseases in mouse models. We also present evidence that engineered ICOSL domains can be formatted to selectively provide costimulatory signals to augment T cell responses. Our scientific platform thus provides a system for developing therapeutic protein candidates with selective biological impact for treatments of a wide array of human disorders including cancer and autoimmune/inflammatory diseases.


Subject(s)
Immunoglobulins/chemistry , Immunoglobulins/genetics , Multigene Family , Animals , CD28 Antigens/genetics , CD28 Antigens/immunology , Directed Molecular Evolution , Female , Humans , Immunoglobulins/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Protein Domains , T-Lymphocytes/immunology
2.
Biochemistry ; 44(34): 11567-73, 2005 Aug 30.
Article in English | MEDLINE | ID: mdl-16114893

ABSTRACT

Beta-APP cleaving enzyme (BACE) is responsible for the first of two proteolytic cleavages of the APP protein that together lead to the generation of the Alzheimer's disease-associated Abeta peptide. It is widely believed that halting the production of Abeta peptide, by inhibition of BACE, is an attractive therapeutic modality for the treatment of Alzheimer's disease. BACE is an aspartyl protease, and there is significant effort in the pharmaceutical community to apply traditional design methods to the development of active site-directed inhibitors of this enzyme. We report here the discovery of a ligand binding pocket within the catalytic domain of BACE that is distinct from the enzymatic active site (i.e., an exosite). Peptides, initially identified from combinatorial phage peptide libraries, contain the sequence YPYF(I/L)P(L/I) and bind specifically to this exosite, even in the presence of saturating concentrations of active site-directed inhibitors. Binding of peptides to the BACE exosite leads to a concentration-dependent inhibition of proteolysis for APP-related, protein-based substrates of BACE. The discovery of this exosite opens new opportunities for the identification and development of novel and potentially selective small molecule inhibitors of BACE that act through exosite, rather than active site, binding interactions.


Subject(s)
Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Amino Acid Sequence , Amyloid Precursor Protein Secretases , Binding Sites , Binding, Competitive , Catalytic Domain , Endopeptidases , Fluorescence Polarization , Humans , Kinetics , Peptide Fragments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL