Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Nat Commun ; 15(1): 3681, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693155

ABSTRACT

Defining genetic factors impacting chemotherapy failure can help to better predict response and identify drug resistance mechanisms. However, there is limited understanding of the contribution of inherited noncoding genetic variation on inter-individual differences in chemotherapy response in childhood acute lymphoblastic leukemia (ALL). Here we map inherited noncoding variants associated with treatment outcome and/or chemotherapeutic drug resistance to ALL cis-regulatory elements and investigate their gene regulatory potential and target gene connectivity using massively parallel reporter assays and three-dimensional chromatin looping assays, respectively. We identify 54 variants with transcriptional effects and high-confidence gene connectivity. Additionally, functional interrogation of the top variant, rs1247117, reveals changes in chromatin accessibility, PU.1 binding affinity and gene expression, and deletion of the genomic interval containing rs1247117 sensitizes cells to vincristine. Together, these data demonstrate that noncoding regulatory variants associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to antileukemic agents.


Subject(s)
Pharmacogenetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Child , Drug Resistance, Neoplasm/genetics , Genetic Variation , Cell Line, Tumor , Vincristine/therapeutic use , Vincristine/pharmacology , Polymorphism, Single Nucleotide , Alleles , Chromatin/metabolism , Chromatin/genetics , Trans-Activators/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Leukemic/drug effects
2.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38593781

ABSTRACT

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Subject(s)
Leukemia , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Asparaginase/pharmacology , Network Pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction , Leukemia/drug therapy
4.
Cancers (Basel) ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672531

ABSTRACT

The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.

5.
Cell Genom ; 3(12): 100442, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38116118

ABSTRACT

B cell lineage acute lymphoblastic leukemia (B-ALL) is composed of diverse molecular subtypes, and while transcriptional and DNA methylation profiling has been extensively examined, the chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq in primary B-ALL cells from 156 patients spanning ten molecular subtypes and present this dataset as a resource. Differential chromatin accessibility and transcription factor (TF) footprint profiling were employed and identified B-ALL cell of origin, TF-target gene interactions enriched in B-ALL, and key TFs associated with accessible chromatin sites preferentially active in B-ALL. We further identified over 20% of accessible chromatin sites exhibiting strong subtype enrichment and candidate TFs that maintain subtype-specific chromatin architectures. Over 9,000 genetic variants were uncovered, contributing to variability in chromatin accessibility among patient samples. Our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants that promote unique gene-regulatory networks.

6.
Proteomics Clin Appl ; 17(6): e2200109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37287368

ABSTRACT

PURPOSE: The endoplasmic reticulum (ER) is the major site of protein synthesis and folding in the cell. ER-associated degradation (ERAD) and unfolded protein response (UPR) are the main mechanisms of ER-mediated cell stress adaptation. Targeting the cell stress response is a promising therapeutic approach in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: Protein expression levels of valosin-containing protein (VCP), a chief element of ERAD, were measured in peripheral blood samples from in 483 pediatric AML patients using reverse phase protein array methodology. Patients participated in the Children's Oncology Group AAML1031 phase 3 clinical trial that randomized patients to standard chemotherapy (cytarabine (Ara-C), daunorubicin, and etoposide [ADE]) versus ADE plus bortezomib (ADE+BTZ). RESULTS: Low-VCP expression was significantly associated with favorable 5-year overall survival (OS) rate compared to middle-high-VCP expression (81% versus 63%, p < 0.001), independent of additional bortezomib treatment. Multivariable Cox regression analysis identified VCP as independent predictor of clinical outcome. UPR proteins IRE1 and GRP78 had significant negative correlation with VCP. Five-year OS in patients characterized by low-VCP, moderately high-IRE1 and high-GRP78 improved after treatment with ADE+BTZ versus ADE (66% versus 88%, p = 0.026). CONCLUSION AND CLINICAL RELEVANCE: Our findings suggest the potential of the protein VCP as biomarker in prognostication prediction in pediatric AML.


Subject(s)
Cell Cycle Proteins , Endoplasmic Reticulum Chaperone BiP , Child , Humans , Bortezomib/pharmacology , Bortezomib/therapeutic use , Bortezomib/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
7.
Blood Cancer J ; 13(1): 101, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386016

ABSTRACT

In TP53 wild-type acute myeloid leukemia (AML), inhibition of MDM2 can enhance p53 protein expression and potentiate leukemic cell apoptosis. MDM2 inhibitor (MDM2i) monotherapy in AML has shown modest responses in clinical trials but combining options of MDM2i with other potent AML-directed agents like cytarabine and venetoclax could improve its efficacy. We conducted a phase I clinical trial (NCT03634228) to study the safety and efficacy of milademetan (an MDM2i) with low-dose cytarabine (LDAC)±venetoclax in adult patients with relapsed refractory (R/R) or newly diagnosed (ND; unfit) TP53 wild-type AML and performed comprehensive CyTOF analyses to interrogate multiple signaling pathways, the p53-MDM2 axis and the interplay between pro/anti-apoptotic molecules to identify factors that determine response and resistance to therapy. Sixteen patients (14 R/R, 2 N/D treated secondary AML) at a median age of 70 years (range, 23-80 years) were treated in this trial. Two patients (13%) achieved an overall response (complete remission with incomplete hematological recovery). Median cycles on trial were 1 (range 1-7) and at a median follow-up of 11 months, no patients remained on active therapy. Gastrointestinal toxicity was significant and dose-limiting (50% of patients ≥ grade 3). Single-cell proteomic analysis of the leukemia compartment revealed therapy-induced proteomic alterations and potential mechanisms of adaptive response to the MDM2i combination. The response was associated with immune cell abundance and induced the proteomic profiles of leukemia cells to disrupt survival pathways and significantly reduced MCL1 and YTHDF2 to potentiate leukemic cell death. The combination of milademetan, LDAC±venetoclax led to only modest responses with recognizable gastrointestinal toxicity. Treatment-induced reduction of MCL1 and YTHDF2 in an immune-rich milieu correlate with treatment response.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Adult , Humans , Young Adult , Middle Aged , Aged , Aged, 80 and over , Tumor Suppressor Protein p53 , Myeloid Cell Leukemia Sequence 1 Protein , Proteomics , Leukemia, Myeloid, Acute/drug therapy
8.
Am J Hematol ; 98(8): 1196-1203, 2023 08.
Article in English | MEDLINE | ID: mdl-37183966

ABSTRACT

Reverse transcription polymerase chain reaction (RT-PCR) for BCR::ABL1 is the most common and widely accepted method of measurable residual disease (MRD) assessment in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL); however, RT-PCR may not be an optimal measure of MRD in many cases of Ph+ ALL. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay (sensitivity of 10-6 ) and its correlation with RT-PCR for BCR::ABL1 in patients with Ph+ ALL. Overall, 32% of patients had a discordance between MRD assessment by RT-PCR and NGS, and 31% of patients who achieved NGS MRD negativity were PCR+ at the same timepoint. Among eight patients with long-term detectable BCR::ABL1 by PCR, six were PCR+/NGS-. These patients generally had stable PCR levels that persisted despite therapeutic interventions, and none subsequently relapsed; in contrast, patients who were PCR+/NGS+ had more variable PCR values that responded to therapeutic intervention. In a separate cohort of prospectively collected clinical samples, 11 of 65 patients (17%) with Ph+ ALL who achieved NGS MRD negativity had detectable BCR::ABL1 by PCR, and none of these patients relapsed. Relapse-free survival and overall survival were similar in patients who were PCR+/NGS- and PCR-/NGS-, suggesting that PCR for BCR::ABL1 did not provide additional prognostic information in patients who achieved NGS MRD negativity. NGS-based assessment of MRD is prognostic in Ph+ ALL and identifies patients with low-level detectable BCR::ABL1 who are unlikely to relapse nor to benefit from therapeutic interventions.


Subject(s)
Fusion Proteins, bcr-abl , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Fusion Proteins, bcr-abl/genetics , Prognosis , Reverse Transcriptase Polymerase Chain Reaction , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , High-Throughput Nucleotide Sequencing , Recurrence
9.
Proc Natl Acad Sci U S A ; 120(16): e2220134120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37036970

ABSTRACT

Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Leukemia , Humans , Glycogen Synthase Kinase 3/metabolism , Cell Line, Tumor , Leukemia/drug therapy , Leukemia/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
10.
Nat Cell Biol ; 25(4): 528-539, 2023 04.
Article in English | MEDLINE | ID: mdl-37024683

ABSTRACT

Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Animals , Humans , Mice , Cell Differentiation/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Hematopoietic Stem Cells/metabolism
11.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982537

ABSTRACT

DNA damage response (DNADR) recognition and repair (DDR) pathways affect carcinogenesis and therapy responsiveness in cancers, including leukemia. We measured protein expression levels of 16 DNADR and DDR proteins using the Reverse Phase Protein Array methodology in acute myeloid (AML) (n = 1310), T-cell acute lymphoblastic leukemia (T-ALL) (n = 361) and chronic lymphocytic leukemia (CLL) (n = 795) cases. Clustering analysis identified five protein expression clusters; three were unique compared to normal CD34+ cells. Individual protein expression differed by disease for 14/16 proteins, with five highest in CLL and nine in T-ALL, and by age in T-ALL and AML (six and eleven proteins, respectively), but not CLL (n = 0). Most (96%) of the CLL cases clustered in one cluster; the other 4% were characterized by higher frequencies of deletion 13q and 17p, and fared poorly (p < 0.001). T-ALL predominated in C1 and AML in C5, but both occurred in all four acute-dominated clusters. Protein clusters showed similar implications for survival and remission duration in pediatric and adult T-ALL and AML populations, with C5 doing best in all. In summary, DNADR and DDR protein expression was abnormal in leukemia and formed recurrent clusters that were shared across the leukemias with shared prognostic implications across diseases, and individual proteins showed age- and disease-related differences.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adult , Child , Leukemia, Myeloid, Acute/genetics , Protein Array Analysis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Proteins/genetics , Chronic Disease , DNA Damage/genetics
12.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982555

ABSTRACT

Proteomic DNA Damage Repair (DDR) expression patterns in Chronic Lymphocytic Leukemia were characterized by quantifying and clustering 24 total and phosphorylated DDR proteins. Overall, three protein expression patterns (C1-C3) were identified and were associated as an independent predictor of distinct patient overall survival outcomes. Patients within clusters C1 and C2 had poorer survival outcomes and responses to fludarabine, cyclophosphamide, and rituxan chemotherapy compared to patients within cluster C3. However, DDR protein expression patterns were not prognostic in more modern therapies with BCL2 inhibitors or a BTK/PI3K inhibitor. Individually, nine of the DDR proteins were prognostic for predicting overall survival and/or time to first treatment. When looking for other proteins that may be associated with or influenced by DDR expression patterns, our differential expression analysis found that cell cycle and adhesion proteins were lower in clusters compared to normal CD19 controls. In addition, cluster C3 had a lower expression of MAPK proteins compared to the poor prognostic patient clusters thus implying a potential regulatory connection between adhesion, cell cycle, MAPK, and DDR signaling in CLL. Thus, assessing the proteomic expression of DNA damage proteins in CLL provided novel insights for deciphering influences on patient outcomes and expanded our understanding of the potential complexities and effects of DDR cell signaling.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proteomics , DNA Damage , Discoidin Domain Receptors/genetics
13.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982970

ABSTRACT

The survival of malignant leukemic cells is dependent on DNA damage repair (DDR) signaling. Reverse Phase Protein Array (RPPA) data sets were assembled using diagnostic samples from 810 adult and 500 pediatric acute myelogenous leukemia (AML) patients and were probed with 412 and 296 strictly validated antibodies, respectively, including those detecting the expression of proteins directly involved in DDR. Unbiased hierarchical clustering identified strong recurrent DDR protein expression patterns in both adult and pediatric AML. Globally, DDR expression was associated with gene mutational statuses and was prognostic for outcomes including overall survival (OS), relapse rate, and remission duration (RD). In adult patients, seven DDR proteins were individually prognostic for either RD or OS. When DDR proteins were analyzed together with DDR-related proteins operating in diverse cellular signaling pathways, these expanded groupings were also highly prognostic for OS. Analysis of patients treated with either conventional chemotherapy or venetoclax combined with a hypomethylating agent revealed protein clusters that differentially predicted favorable from unfavorable prognoses within each therapy cohort. Collectively, this investigation provides insight into variable DDR pathway activation in AML and may help direct future individualized DDR-targeted therapies in AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Adult , Child , Prognosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , DNA Repair/genetics , DNA Damage , Discoidin Domain Receptors/genetics
14.
bioRxiv ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-36824825

ABSTRACT

B-cell lineage acute lymphoblastic leukemia (B-ALL) is comprised of diverse molecular subtypes and while transcriptional and DNA methylation profiling of B-ALL subtypes has been extensively examined, the accompanying chromatin landscape is not well characterized for many subtypes. We therefore mapped chromatin accessibility using ATAC-seq for 10 B-ALL molecular subtypes in primary ALL cells from 154 patients. Comparisons with B-cell progenitors identified candidate B-ALL cell-of-origin and AP-1-associated cis-regulatory rewiring in B-ALL. Cis-regulatory rewiring promoted B-ALL-specific gene regulatory networks impacting oncogenic signaling pathways that perturb normal B-cell development. We also identified that over 20% of B-ALL accessible chromatin sites exhibit strong subtype enrichment, with transcription factor (TF) footprint profiling identifying candidate TFs that maintain subtype-specific chromatin architectures. Over 9000 inherited genetic variants were further uncovered that contribute to variability in chromatin accessibility among individual patient samples. Overall, our data suggest that distinct chromatin architectures are driven by diverse TFs and inherited genetic variants which promote unique gene regulatory networks that contribute to transcriptional differences among B-ALL subtypes.

15.
medRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798219

ABSTRACT

Although acute lymphoblastic leukemia (ALL) is the most common childhood cancer, there is limited understanding of the contribution of inherited genetic variation on inter-individual differences in chemotherapy response. Defining genetic factors impacting therapy failure can help better predict response and identify drug resistance mechanisms. We therefore mapped inherited noncoding variants associated with chemotherapeutic drug resistance and/or treatment outcome to ALL cis-regulatory elements and investigated their gene regulatory potential and genomic connectivity using massively parallel reporter assays and promoter capture Hi-C, respectively. We identified 53 variants with reproducible allele-specific effects on transcription and high-confidence gene targets. Subsequent functional interrogation of the top variant (rs1247117) determined that it disrupted a PU.1 consensus motif and PU.1 binding affinity. Importantly, deletion of the genomic interval containing rs1247117 sensitized ALL cells to vincristine. Together, these data demonstrate that noncoding regulatory variation associated with diverse pharmacological traits harbor significant effects on allele-specific transcriptional activity and impact sensitivity to chemotherapeutic agents in ALL.

16.
NAR Cancer ; 4(4): zcac039, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36518526

ABSTRACT

Acute myeloid leukemia (AML) is driven by numerous molecular events that contribute to disease progression. Herein, we identify hnRNP K overexpression as a recurrent abnormality in AML that negatively correlates with patient survival. Overexpression of hnRNP K in murine fetal liver cells results in altered self-renewal and differentiation potential. Further, murine transplantation models reveal that hnRNP K overexpression results in myeloproliferation in vivo. Mechanistic studies expose a direct functional relationship between hnRNP K and RUNX1-a master transcriptional regulator of hematopoiesis often dysregulated in leukemia. Molecular analyses show that overexpression of hnRNP K results in an enrichment of an alternatively spliced isoform of RUNX1 lacking exon 4. Our work establishes hnRNP K's oncogenic potential in influencing myelogenesis through its regulation of RUNX1 splicing and subsequent transcriptional activity.

17.
EJHaem ; 3(4): 1321-1325, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36467805

ABSTRACT

Classical hairy cell leukemia (HCL-c) and HCL variant (HCL-v) are recognized as separate entities with HCL-v having significantly shorter overall survival. Proteomic studies, shown to be prognostic in various forms of leukemia, have not been performed in HCL. We performed reverse phase protein array-based protein profiling with 384 antibodies in HCL-c (n = 12), HCL-v (n = 4), and normal B-cells (n = 5) samples. While HCL could be distinguished from normal based on unsupervised hierarchical clustering, overlap in protein expression patterns was seen between HCL-c and HCL-v, with ∼10% of the proteins being differentially expressed, suggesting potential therapeutic targets.

18.
Blood Adv ; 6(13): 4006-4014, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35533262

ABSTRACT

Measurable residual disease (MRD) is highly prognostic for relapse and overall survival (OS) in acute lymphoblastic leukemia (ALL), although many patients with apparent "MRD negativity" by standard assays still relapse. We evaluated the clinical impact of a highly sensitive next-generation sequencing (NGS) MRD assay in 74 adults with ALL undergoing frontline therapy. Among remission samples that were MRD negative by multiparameter flow cytometry (MFC), 46% were MRD+ by the NGS assay. After 1 cycle of induction chemotherapy, MRD negativity by MFC at a sensitivity of 1 × 10-4 and NGS at a sensitivity of 1 × 10-6 was achieved in 66% and 23% of patients, respectively. The 5-year cumulative incidence of relapse (CIR) among patients who achieved MRD negativity by MFC at complete remission (CR) was 29%; in contrast, no patients who achieved early MRD negativity by NGS relapsed, and their 5-year OS was 90%. NGS MRD negativity at CR was associated with significantly decreased risk of relapse compared with MRD positivity (5-year CIR, 0% vs 45%, respectively; P = .04). Among patients who were MRD negative by MFC, detection of low levels of MRD by NGS identified patients who still had a significant risk of relapse (5-year CIR, 39%). Early assessment of MRD using a highly sensitive NGS assay adds clinically relevant prognostic information to standard MFC-based approaches and can identify patients with ALL undergoing frontline therapy who have a very low risk of relapse and excellent long-term survival.


Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Acute Disease , Adult , High-Throughput Nucleotide Sequencing , Humans , Neoplasm, Residual/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recurrence
19.
Blood Cancer J ; 12(3): 43, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35301276

ABSTRACT

Protein expression for 384 total and post-translationally modified proteins was assessed in 871 CLL and MSBL patients and was integrated with clinical data to identify strategies for improving diagnostics and therapy, making this the largest CLL proteomics study to date. Proteomics identified six recurrent signatures that were highly prognostic of survival and time to first or second treatment at three levels: individual proteins, when grouped into 40 functionally related groups (PFGs), and systemically in signatures (SGs). A novel SG characterized by hairy cell leukemia like proteomics but poor therapy response was discovered. SG membership superseded other prognostic factors (Rai Staging, IGHV Status) and were prognostic for response to modern (BTK inhibition) and older CLL therapies. SGs and PFGs membership provided novel drug targets and defined optimal candidates for Watch and Wait vs. early intervention. Collectively proteomics demonstrates promise for improving classification, therapeutic strategy selection, and identifying novel therapeutic targets.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Prognosis , Proteomics
20.
Haematologica ; 107(10): 2329-2343, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35021602

ABSTRACT

Pediatric acute myeloid leukemia (AML) remains a fatal disease for at least 30% of patients, stressing the need for improved therapies and better risk stratification. As proteins are the unifying feature of (epi)genetic and environmental alterations, and are often targeted by novel chemotherapeutic agents, we studied the proteomic landscape of pediatric AML. Protein expression and activation levels were measured in 500 bulk leukemic patients' samples and 30 control CD34+ cell samples, using reverse phase protein arrays with 296 strictly validated antibodies. The multistep MetaGalaxy analysis methodology was applied and identified nine protein expression signatures (PrSIG), based on strong recurrent protein expression patterns. PrSIG were associated with cytogenetics and mutational state, and with favorable or unfavorable prognosis. Analysis based on treatment (i.e., ADE vs. ADE plus bortezomib) identified three PrSIG that did better with ADE plus bortezomib than with ADE alone. When PrSIG were studied in the context of cytogenetic risk groups, PrSIG were independently prognostic after multivariate analysis, suggesting a potential value for proteomics in combination with current classification systems. Proteins with universally increased (n=7) or decreased (n=17) expression were observed across PrSIG. Certain proteins significantly differentially expressed from normal could be identified, forming a hypothetical platform for personalized medicine.


Subject(s)
Leukemia, Myeloid, Acute , Proteomics , Bortezomib , Child , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Prognosis , Protein Array Analysis , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...