Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(10): e0185985, 2017.
Article in English | MEDLINE | ID: mdl-28982197

ABSTRACT

Capsaicin-sensitive sensory C-fibers derived from vagal ganglia innervate the visceral organs, and respond to inflammatory mediators and noxious stimuli. These neurons play an important role in maintenance of visceral homeostasis, and contribute to the symptoms of visceral inflammatory diseases. Vagal sensory neurons are located in two ganglia, the jugular ganglia (derived from the neural crest), and the nodose ganglia (from the epibranchial placodes). The functional difference, especially in response to immune mediators, between jugular and nodose neurons is not fully understood. In this study, we microscopically isolated murine nodose and jugular capsaicin-sensitive / Trpv1-expressing C-fiber neurons and performed transcriptome profiling using ultra-low input RNA sequencing. RNAseq detected genes with significantly differential expression in jugular and nodose neurons, which were mostly involved in neural functions. Transcriptional regulators, including Cited1, Hoxb5 and Prdm12 showed distinct expression patterns in the two C-fiber neuronal populations. Common and specific expression of immune receptor proteins was characterized in each neuronal type. The expression of immune receptors that have received little or no attention from vagal sensory biologists is highlighted including receptors for certain chemokines (CXCLs), interleukins (IL-4) and interferons (IFNα, IFNγ). Stimulation of immune receptors with their cognate ligands led to activation of the C-fibers in isolated functional assays.


Subject(s)
Capsaicin/pharmacology , Inflammation Mediators/metabolism , Neurons/metabolism , Nodose Ganglion/metabolism , Receptors, Cell Surface/metabolism , Sequence Analysis, RNA/methods , TRPV Cation Channels/metabolism , Vagus Nerve/metabolism , Animals , Calcium/metabolism , Mice , Neurons/drug effects , Nodose Ganglion/cytology , Vagus Nerve/cytology
2.
PLoS One ; 12(8): e0182610, 2017.
Article in English | MEDLINE | ID: mdl-28787462

ABSTRACT

A new ovarian near-diploid cell line, OVDM1, was derived from a highly aneuploid serous ovarian metastatic adenocarcinoma. A metastatic tumor was obtained from a 47-year-old Ashkenazi Jewish patient three years after the first surgery removed the primary tumor, both ovaries, and the remaining reproductive organs. OVDM1 was characterized by cell morphology, genotyping, tumorigenic assay, mycoplasma testing, spectral karyotyping (SKY), and molecular profiling of the whole genome by aCGH and gene expression microarray. Targeted sequencing of a panel of cancer-related genes was also performed. Hierarchical clustering of gene expression data clearly confirmed the ovarian origin of the cell line. OVDM1 has a near-diploid karyotype with a low-level aneuploidy, but samples of the original metastatic tumor were grossly aneuploid. A number of single nucleotide variations (SNVs)/mutations were detected in OVDM1 and the metastatic tumor samples. Some of them were cancer-related according to COSMIC and HGMD databases (no founder mutations in BRCA1 and BRCA2 have been found). A large number of focal copy number alterations (FCNAs) were detected, including homozygous deletions (HDs) targeting WWOX and GATA4. Progression of OVDM1 from early to late passages was accompanied by preservation of the near-diploid status, acquisition of only few additional large chromosomal rearrangements and more than 100 new small FCNAs. Most of newly acquired FCNAs seem to be related to localized but massive DNA fragmentation (chromothripsis-like rearrangements). Newly developed near-diploid OVDM1 cell line offers an opportunity to evaluate tumorigenesis pathways/events in a minor clone of metastatic ovarian adenocarcinoma as well as mechanisms of chromothripsis.


Subject(s)
Aneuploidy , Cell Line, Tumor , Diploidy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Adult , Animals , Cell Transformation, Neoplastic , Disease Progression , Female , Gene Expression Profiling , Genomics , Humans , Mice , Neoplasm Metastasis , Neoplasm Staging
3.
Cancer Genet ; 206(9-10): 330-9, 2013.
Article in English | MEDLINE | ID: mdl-24200637

ABSTRACT

Intratumor heterogeneity can confound the results of mutation analyses in oncodriver genes using traditional methods thereby challenging the application of targeted cancer therapy strategies for patients Ultradeep sequencing can detect low frequency and expanded clonal mutations in primary tumors to better inform treatment decisions. KRAS coding exons in 61 treatment-naive colorectal cancer (CRC) tumors and KRAS, EGFR, ALK, and MET in lung tumors from three Chinese non-small cell lung cancer (NSCLC) patients were sequenced using ultradeep sequencing methods. Forty-one percent of CRC patients (25/61) harbored mutations in the KRAS active domain, eight of which (13%) were not detected by Sanger sequencing. Three (of eight) had frequencies less than 10% and one patient harbored more than one mutation. Low frequency KRAS active (G12R) and EGFR kinase domain mutations (G719A) were identified in one NSCLC patient. A second NSCLC patient showed an EML4-ALK fusion with ALK, EGFR, and MET mutations. A third NSCLC patient harbored multiple low frequency mutations in KRAS, EGFR, and MET as well as ALK gene copy number increases. Within the same patient, multiple low frequency mutations occurred within a gene. A complex pattern of intrinsic low frequency driver mutations in well-known tumor oncogenes may exist prior to treatment, resulting in resistance to targeted therapies. Ultradeep sequencing can characterize intratumor heterogeneity and identify such mutations to ultimately affect treatment decisions.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Colorectal Neoplasms/genetics , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Anaplastic Lymphoma Kinase , Cell Line, Tumor , Child , DNA Mutational Analysis , ErbB Receptors/genetics , Female , Gene Frequency , HCT116 Cells , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras) , Receptor Protein-Tyrosine Kinases/genetics , Young Adult
4.
Genes Chromosomes Cancer ; 50(6): 466-77, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21412933

ABSTRACT

Birt-Hogg-Dubé syndrome (BHDS), caused by germline mutations in the folliculin (FLCN) gene, predisposes individuals to develop fibrofolliculomas, pulmonary cysts, spontaneous pneumothoraces, and kidney cancer. The FLCN mutation detection rate by bidirectional DNA sequencing in the National Cancer Institute BHDS cohort was 88%. To determine if germline FLCN intragenic deletions/duplications were responsible for BHDS in families lacking FLCN sequence alterations, 23 individuals from 15 unrelated families with clinically confirmed BHDS but no sequence variations were analyzed by real-time quantitative PCR (RQ-PCR) using primers for all 14 exons. Multiplex ligation-dependent probe amplification (MLPA) assay and array-based comparative genomic hybridization (aCGH) were utilized to confirm and fine map the rearrangements. Long-range PCR followed by DNA sequencing was used to define the breakpoints. We identified six unique intragenic deletions in nine patients from six different BHDS families including four involving exon 1, one that spanned exons 2-5, and one that encompassed exons 7-14 of FLCN. Four of the six deletion breakpoints were mapped, revealing deletions ranging from 5688 to 9189 bp. In addition, one 1341 bp duplication, which included exons 10 and 11, was identified and mapped. This report confirms that large intragenic FLCN deletions can cause BHDS and documents the first large intragenic FLCN duplication in a BHDS patient. Additionally, we identified a deletion "hot spot" in the 5'-noncoding-exon 1 region that contains the putative FLCN promoter based on a luciferase reporter assay. RQ-PCR, MLPA and aCGH may be used for clinical molecular diagnosis of BHDS in patients who are FLCN mutation-negative by DNA sequencing.


Subject(s)
Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins/genetics , Comparative Genomic Hybridization , Exons , Female , Genetic Association Studies , Germ-Line Mutation , Humans , Male , Phenotype , Promoter Regions, Genetic , Sequence Deletion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...