Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Res Cardiol ; 113(2): 301-312, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955712

ABSTRACT

BACKGROUND: Cancer therapy-related cardiovascular toxicity (CTR-CVT) from immune checkpoint inhibitor (ICI) therapy is still incompletely characterized, and patients with pre-existing cardiovascular disease represent a particularly high-risk cohort. Valid parameters for risk stratification of these patients are missing. Neutrophil-to-lymphocyte ratio (NLR) has been shown to predict mortality and adverse events in other cardiovascular cohorts. The present study aims to examine the predictive capacity of NLR for risk stratification of patients particularly vulnerable for CTR-CVT under ICI therapy. METHODS: We performed an analysis of 88 cancer patients (69 ± 11 years, 25% female) with pre-existing cardiovascular disease under ICI therapy from the prospective Essen Cardio-Oncology Registry (ECoR). NLR was assessed at patient enrollment and the population was divided through receiver operator characteristic (ROC) curve analysis in patients with low (< 4.57) and high (≥ 4.57) NLR. Endpoint was the whole spectrum of CTR-CVT, according to the European guidelines on cardio-oncology. The median follow-up was 357 days (interquartile range (IQR): 150-509 days). RESULTS: We observed 4 cases of myocarditis, 17 cases of vascular toxicity, 3 cases of arterial hypertension, 22 cases of arrhythmia or QTc prolongation and 17 cases of cardiovascular dysfunction. NLR was associated with overall CTR-CVT by univariable Cox regression (hazard ratio (HR): 1.443; 95% confidence interval (CI) 1.082-1.925; p = 0.013). However, this association was attenuated after adjusting for further confounders. CONCLUSION: NLR is moderately associated with CTR-CVT in cancer patients with pre-existing cardiovascular disease under ICI therapy. Surveillance of NLR during ICI therapy might be an effective and economically biomarker for risk stratification in these high-risk patients.


Subject(s)
Myocarditis , Neoplasms , Humans , Female , Male , Neutrophils , Immune Checkpoint Inhibitors/adverse effects , Prospective Studies , Lymphocytes , Neoplasms/drug therapy , Retrospective Studies
2.
Int J Cardiol Heart Vasc ; 48: 101269, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37731517

ABSTRACT

CD47 is a cell surface protein controlling phagocytotic activity of innate immune cells. CD47 blockade was investigated as an immune checkpoint therapy in cancer treatment, enhancing phagocytosis of tumor cells by macrophages. Anti-CD47 treatment also reduced injury size during reperfused acute myocardial infarction (repAMI) by enhancing phagocytotic acitivity of macrophages. Little is known about the impact of CD47 blockade on neutrophils, representing the main portion of early infiltrating immune cells after repAMI. Therefore, we performed 45 min of cardiac ischemia followed by 24 h of reperfusion, observing a decreased cardiac injury size measured by triphenyl tetrazolium chloride (TTC) Evan's blue staining. We were able to detect this effect with an innovative three-dimensional method based on light sheet fluorescence microscopy (LSFM). This further allowed us a simultaneous analysis of neutrophil infiltration, showing an unaltered amount of injury-associated neutrophils with reduced cardiac injury volume from repAMI. This observation suggests modulated phagocytosis of cell debris by neutrophils. Therefore, we performed flow cytometry analysis, revealing an increased phagocytotic activity of neutrophils in vitro. These findings highlight that CD47 blockade also enhances phagocytosis of cardiac cell debris by neutrophils, which might be an additional protective effect of anti-CD47 treatment after repAMI.

3.
Cell Rep Methods ; 3(3): 100436, 2023 03 27.
Article in English | MEDLINE | ID: mdl-37056368

ABSTRACT

Light-sheet fluorescence microscopy (LSFM) can produce high-resolution tomograms of tissue vasculature with high accuracy. However, data processing and analysis is laborious due to the size of the datasets. Here, we introduce VesselExpress, an automated software that reliably analyzes six characteristic vascular network parameters including vessel diameter in LSFM data on average computing hardware. VesselExpress is ∼100 times faster than other existing vessel analysis tools, requires no user interaction, and integrates batch processing and parallelization. Employing an innovative dual Frangi filter approach, we show that obesity induces a large-scale modulation of brain vasculature in mice and that seven other major organs differ strongly in their 3D vascular makeup. Hence, VesselExpress transforms LSFM from an observational to an analytical working tool.


Subject(s)
Imaging, Three-Dimensional , Software , Animals , Mice , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Brain/diagnostic imaging
4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047026

ABSTRACT

Cancer survival rates have increased significantly because of improvements in therapy regimes and novel immunomodulatory drugs. Recently, combination therapies of anthracyclines and immune checkpoint inhibitors (ICIs) have been proposed to maximize neoplastic cell removal. However, it has been speculated that a priori anthracycline exposure may prone the heart vulnerable to increased toxicity from subsequent ICI therapy, such as an anti-programmed cell death protein 1 (PD1) inhibitor. Here, we used a high-dose anthracycline mouse model to characterize the role of the PD1 immune checkpoint signaling pathway in cardiac tissue using flow cytometry and immunostaining. Anthracycline treatment led to decreased heart function, increased concentration of markers of cell death after six days and a change in heart cell population composition with fewer cardiomyocytes. At the same time point, the number of PD1 ligand (PDL1)-positive immune cells and endothelial cells in the heart decreased significantly. The results suggest that PD1/PDL1 signaling is affected after anthracycline treatment, which may contribute to an increased susceptibility to immune-related adverse events of subsequent anti-PD1/PDL1 cancer therapy.


Subject(s)
Anthracyclines , Neoplasms , Animals , Mice , Anthracyclines/pharmacology , Anthracyclines/therapeutic use , Endothelial Cells/metabolism , Immunotherapy/methods , Signal Transduction , B7-H1 Antigen/metabolism
5.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886878

ABSTRACT

The programmed cell death protein 1 (PD1) immune checkpoint prevents inflammatory tissue damage by inhibiting immune reactions. Understanding the relevance of cardiac PD1 signaling may provide new insights into the inflammatory events under baseline conditions and disease. Here, we demonstrate distinct immunological changes upon PD1 deficiency in healthy hearts and during reperfused acute myocardial infarction (repAMI). In PD1-deficient mice, upregulated inflammatory cytokines were identified under baseline conditions including cardiac interleukins and extracellular signal-related kinase 1/2 (ERK1/2). A murine in vivo repAMI model to determine inflammatory changes in the early phase showed downregulation of the ligand PDL1, paralleled by an endothelial injury, indicated by loss of the CD31 signal. Immunofluorescence imaging showed decreased PDL1 expression specifically in the infarct zone, highlighting an involvement in PDL1 in myocardial injury response. Pharmacological depletion of PD1 prior to repAMI did not alter the area of infarction but led to increased numbers of CD8+ T cells in treated mice. We conclude that PD1/PDL1 signaling plays a significant role in healthy hearts and repAMI, emphasizing the relevance of adaptive immunity during myocardial injury. The findings highlight the risk for adverse outcomes from acute myocardial infarction in the growing group of patients receiving immune checkpoint inhibitor therapy.


Subject(s)
Myocardial Infarction , Programmed Cell Death 1 Receptor , Adaptive Immunity/genetics , Animals , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Mice , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Programmed Cell Death 1 Receptor/genetics
6.
Eur Heart J ; 43(4): 316-329, 2022 01 31.
Article in English | MEDLINE | ID: mdl-34389849

ABSTRACT

AIMS: Cardiac immune-related adverse events (irAEs) from immune checkpoint inhibition (ICI) targeting programmed death 1 (PD1) are of growing concern. Once cardiac irAEs become clinically manifest, fatality rates are high. Cardio-oncology aims to prevent detrimental effects before manifestation of severe complications by targeting early pathological changes. We therefore aimed to investigate early consequences of PD1 inhibition for cardiac integrity to prevent the development of overt cardiac disease. METHODS AND RESULTS: We investigated cardiac-specific consequences from anti-PD1 therapy in a combined biochemical and in vivo phenotyping approach. Mouse hearts showed broad expression of the ligand PDL1 on cardiac endothelial cells as a main mediator of immune-crosstalk. Using a novel melanoma mouse model, we assessed that anti-PD1 therapy promoted myocardial infiltration with CD4+ and CD8+ T cells, the latter being markedly activated. Left ventricular (LV) function was impaired during pharmacological stress, as shown by pressure-volume catheterization. This was associated with a dysregulated myocardial metabolism, including the proteome and the lipidome. Analogous to the experimental approach, in patients with metastatic melanoma (n = 7) receiving anti-PD1 therapy, LV function in response to stress was impaired under therapy. Finally, we identified that blockade of tumour necrosis factor alpha (TNFα) preserved LV function without attenuating the anti-cancer efficacy of anti-PD1 therapy. CONCLUSIONS: Anti-PD1 therapy induces a disruption of cardiac immune homeostasis leading to early impairment of myocardial functional integrity, with potential prognostic effects on the growing number of treated patients. Blockade of TNFα may serve as an approach to prevent the manifestation of ICI-related cardiotoxicity.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Animals , Cardiotoxicity/etiology , Endothelial Cells , Humans , Immune Checkpoint Inhibitors/adverse effects , Melanoma/drug therapy , Mice , Programmed Cell Death 1 Receptor/therapeutic use
7.
ESC Heart Fail ; 8(1): 162-166, 2021 02.
Article in English | MEDLINE | ID: mdl-33219613

ABSTRACT

Coronavirus disease 2019 (COVID-19) is challenging the care for cardiovascular patients, resulting in serious consequences with increasing mortality in pre-diseased heart failure patients. In the current state of the pandemic, the physiopathology of COVID-19 affecting pre-diseased hearts and the management of terminal heart failure in COVID-19 patients remain unclear. We outline the findings of a young COVID-19 patient suffering from idiopathic cardiomyopathy who was treated for acute multi-organ failure and required cardiac surgery with implantation of a temporary right ventricular and durable left ventricular assist device (LVAD). For deeper translational insights, we used in-depth tissue analysis by electron and light sheet fluorescence microscopy revealing evidence for spatial distribution of severe acute respiratory syndrome coronavirus 2 in the heart. This indicates that in-depth analysis may represent a valuable tool in understanding indistinct clinical cases. We conclude that COVID-19 directly affects pre-diseased hearts, but the consequences can be treated successfully with LVAD implantation.


Subject(s)
COVID-19/complications , Cardiomyopathy, Dilated/etiology , Heart-Assist Devices , Adult , Biopsy , COVID-19/therapy , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/therapy , Humans , Male , Prosthesis Implantation , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/therapy
8.
ESC Heart Fail ; 7(2): 423-433, 2020 04.
Article in English | MEDLINE | ID: mdl-32069386

ABSTRACT

AIMS: Childhood cancer therapy is associated with a significant risk of therapy-related cardiotoxicity. This meta-analysis aims to evaluate cardiac biomarkers for the detection of cancer therapy-related left ventricular (LV) dysfunction in childhood cancer patients. METHODS AND RESULTS: PubMed, Cochrane Library, Wiley Library, and Web of Science were screened for studies investigating brain natriuretic peptide (BNP)/N-terminal proBNP (NT-proBNP) or cardiac troponin in childhood cancer patients. The odds ratios (OR) for elevation of cardiac biomarkers and association with LV dysfunction were calculated using a random-effects model. Data from 27 studies with 1651 subjects were included. BNP/NT-proBNP levels were higher post-treatment compared with controls or pre-treatment values [standardized mean difference = 1.0; 95% confidence interval (CI) = 0.6-1.4; n = 320; P < 0.001]. LV dysfunction was present in 11.76% of included patients, and risk for LV dysfunction was increased in patients with elevated BNP/NT-proBNP (OR = 7.1; 95% CI = 2.0-25.5; n = 350; P = 0.003). The sensitivity of BNP/NT-proBNP for the detection of LV dysfunction was 33.3%, and the specificity was 91.5%. Sensitivity increased when selecting for studies that assessed patients < 5 years after anthracycline exposure and for studies including high cumulative anthracycline doses. Anthracycline chemotherapy was associated with an increased frequency of elevated troponin (OR = 3.7; 95% CI = 2.1-6.5; n = 348; P < 0.001). The available evidence on the association between elevated troponin and LV dysfunction was insufficient for an adequate analysis. In five included studies, the frequency of LV dysfunction was not increased in patients with elevated troponin (OR = 2.5; 95% CI = 0.5-13.2; n = 179; P = 0.53). CONCLUSIONS: BNP/NT-proBNP is associated with cardiotoxicity in paediatric cancer patients receiving anthracycline therapy, but owing to low sensitivity, BNP/NT-proBNP has to be evaluated in the context of further parameters including clinical assessment and echocardiography. Future studies are needed to determine whether troponin serves as a marker for cardiotoxicity in children. Standardized recommendations for the application of cardiac biomarkers in children undergoing cardiotoxic cancer therapy may benefit management and clinical outcome.


Subject(s)
Neoplasms , Ventricular Dysfunction, Left , Anthracyclines/adverse effects , Biomarkers , Cardiotoxicity/diagnosis , Cardiotoxicity/epidemiology , Cardiotoxicity/etiology , Child , Humans , Natriuretic Peptide, Brain , Neoplasms/drug therapy , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/epidemiology
10.
Nat Commun ; 10(1): 2312, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127113

ABSTRACT

Cardioprotection by salvage of the infarct-affected myocardium is an unmet yet highly desired therapeutic goal. To develop new dedicated therapies, experimental myocardial ischemia/reperfusion (I/R) injury would require methods to simultaneously characterize extent and localization of the damage and the ensuing inflammatory responses in whole hearts over time. Here we present a three-dimensional (3D), simultaneous quantitative investigation of key I/R injury-components by combining bleaching-augmented solvent-based non-toxic clearing (BALANCE) using ethyl cinnamate (ECi) with light sheet fluorescence microscopy. This allows structural analyses of fluorescence-labeled I/R hearts with exceptional detail. We discover and 3D-quantify distinguishable acute and late vascular I/R damage zones. These contain highly localized and spatially structured neutrophil infiltrates that are modulated upon cardiac healing. Our model demonstrates that these characteristic I/R injury patterns can detect the extent of damage even days after the ischemic index event hence allowing the investigation of long-term recovery and remodeling processes.


Subject(s)
Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Myocardial Reperfusion Injury/diagnostic imaging , Myocardium/pathology , Animals , Biopsy , Cinnamates/chemistry , Coronary Artery Bypass , Disease Models, Animal , Humans , Luminescent Agents/chemistry , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence/methods , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/surgery , Myocardium/cytology , Myocardium/immunology , Neutrophils/immunology , Red Fluorescent Protein
11.
Nitric Oxide ; 67: 68-74, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28392447

ABSTRACT

BACKGROUND: Myocardial infarction remains the single leading cause of death worldwide. Upon reperfusion of occluded arteries, deleterious cellular mediators particularly located at the mitochondria level can be activated, thus limiting the outcome in patients. This may lead to the so-called ischemia/reperfusion (I/R) injury. Calpains are cysteine proteases and mediators of caspase-independent cell death. Recently, they have emerged as central transmitters of cellular injury in several cardiac pathologies e.g. hypertrophy and acute I/R injury. METHODS: Here we investigated the role of cardiac calpains in acute I/R in relation to mitochondrial integrity and whether calpains can be effectively inhibited by posttranslational modification by S-nitrosation. Taking advantage of the a cardiomyocyte cell line (HL1), we determined S-nitrosation by the Biotin-switch approach, cell viability and intracellular calcium concentration after simulated ischemia and reoxygenation - all in dependence of supplementation with nitrite, which is known as an 'hypoxic nitric oxide (NO) donor'. Likewise, using an in vivo I/R model, calpain S-nitrosation, calpain activity and myocardial I/R injury were characterized in vivo. RESULTS: Nitrite administration resulted in an increased S-nitrosation of calpains, and this was associated with an improved cell-survival. No impact was detected on calcium levels. In line with these in vitro experiments, nitrite initiated calpain S-nitrosation in vivo and caused an infarct sparing effect in an in vivo myocardial I/R model. Using electron microscopy in combination with immuno-gold labeling we determined that calpain 10 increased, while calpain 2 decreased in the course of I/R. Nitrite, in turn, prevented an I/R induced increase of calpains 10 at mitochondria and reduced levels of calpain 1. CONCLUSION: Lethal myocardial injury remains a key aspect of myocardial I/R. We show that calpains, as key players in caspase-independent apoptosis, increasingly locate at mitochondria following I/R. Inhibitory post-translational modification by S-nitrosation of calpains reduces deleterious calpain activity in murine cardiomyocytes and in vivo.


Subject(s)
Calpain/antagonists & inhibitors , Myocardial Ischemia/prevention & control , Myocardial Reperfusion Injury/prevention & control , Nitrates/chemistry , Animals , Calpain/chemistry , Calpain/metabolism , Cell Line , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Myocardial Infarction/metabolism , Nitrites/administration & dosage , Nitrosation
SELECTION OF CITATIONS
SEARCH DETAIL
...