Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(5)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37973377

ABSTRACT

Individuals' phenotypes, including the brain's structure and function, are largely determined by genes and their interplay. The resting brain generates salient rhythmic patterns that can be characterized noninvasively using functional neuroimaging such as magnetoencephalography (MEG). One of these rhythms, the somatomotor (rolandic) beta rhythm, shows intermittent high amplitude "events" that predict behavior across tasks and species. Beta rhythm is altered in neurological disease. The aperiodic (1/f) signal present in electrophysiological recordings is also modulated by some neurological conditions and aging. Both sensorimotor beta and aperiodic signal could thus serve as biomarkers of sensorimotor function. Knowledge about the extent to which these brain functional measures are heritable could shed light on the mechanisms underlying their generation. We investigated the heritability and variability of human spontaneous sensorimotor beta rhythm events and aperiodic activity in 210 healthy male and female adult siblings' spontaneous MEG activity. The most heritable trait was the aperiodic 1/f signal, with a heritability of 0.87 in the right hemisphere. Time-resolved beta event amplitude parameters were also highly heritable, whereas the heritabilities for overall beta power, peak frequency, and measures of event duration remained nonsignificant. Human sensorimotor neural activity can thus be dissected into different components with variable heritability. We postulate that these differences partially reflect different underlying signal-generating mechanisms. The 1/f signal and beta event amplitude measures may depend more on fixed, anatomical parameters, whereas beta event duration and its modulation reflect dynamic characteristics, guiding their use as potential disease biomarkers.


Subject(s)
Brain , Magnetoencephalography , Adult , Humans , Male , Female , Magnetoencephalography/methods , Brain/physiology , Brain Mapping , Beta Rhythm/physiology , Biomarkers
2.
Eur J Neurosci ; 56(2): 3979-3990, 2022 07.
Article in English | MEDLINE | ID: mdl-35560964

ABSTRACT

Despite optimal oral drug treatment, about 90% of patients with Parkinson's disease develop motor fluctuation and dyskinesia within 5-10 years from the diagnosis. Moreover, the patients show non-motor symptoms in different sensory domains. Bilateral deep brain stimulation (DBS) applied to the subthalamic nucleus is considered the most effective treatment in advanced Parkinson's disease, and it has been suggested to affect sensorimotor modulation and relate to motor improvement in patients. However, observations on the relationship between sensorimotor activity and clinical improvement have remained sparse. Here, we studied the somatosensory evoked magnetic fields in 13 right-handed patients with advanced Parkinson's disease before and 7 months after stimulator implantation. Somatosensory processing was addressed with magnetoencephalography during alternated median nerve stimulation at both wrists. The strengths and the latencies of the ~60-ms responses at the contralateral primary somatosensory cortices were highly variable but detectable and reliably localized in all patients. The response strengths did not differ between preoperative and postoperative DBSON measurements. The change in the response strength between preoperative and postoperative condition in the dominant left hemisphere of our right-handed patients correlated with the alleviation of their motor symptoms (p = .04). However, the result did not survive correction for multiple comparisons. Magnetoencephalography appears an effective tool to explore non-motor effects in patients with Parkinson's disease, and it may help in understanding the neurophysiological basis of DBS. However, the high interindividual variability in the somatosensory responses and poor tolerability of DBSOFF condition warrants larger patient groups and measurements also in non-medicated patients.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Magnetoencephalography , Parkinson Disease/surgery , Subthalamic Nucleus/physiology , Treatment Outcome
3.
Neuroimage ; 257: 119308, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35569783

ABSTRACT

Exaggerated subthalamic beta oscillatory activity and increased beta range cortico-subthalamic synchrony have crystallized as the electrophysiological hallmarks of Parkinson's disease. Beta oscillatory activity is not tonic but occurs in 'bursts' of transient amplitude increases. In Parkinson's disease, the characteristics of these bursts are altered especially in the basal ganglia. However, beta oscillatory dynamics at the cortical level and how they compare with healthy brain activity is less well studied. We used magnetoencephalography (MEG) to study sensorimotor cortical beta bursting and its modulation by subthalamic deep brain stimulation in Parkinson's disease patients and age-matched healthy controls. We show that the changes in beta bursting amplitude and duration typical of Parkinson's disease can also be observed in the sensorimotor cortex, and that they are modulated by chronic subthalamic deep brain stimulation, which, in turn, is reflected in improved motor function at the behavioural level. In addition to the changes in individual beta bursts, their timing relative to each other was altered in patients compared to controls: bursts were more clustered in untreated Parkinson's disease, occurring in 'bursts of bursts', and re-burst probability was higher for longer compared to shorter bursts. During active deep brain stimulation, the beta bursting in patients resembled healthy controls' data. In summary, both individual bursts' characteristics and burst patterning are affected in Parkinson's disease, and subthalamic deep brain stimulation normalizes some of these changes to resemble healthy controls' beta bursting activity, suggesting a non-invasive biomarker for patient and treatment follow-up.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Basal Ganglia , Beta Rhythm/physiology , Humans , Parkinson Disease/therapy
SELECTION OF CITATIONS
SEARCH DETAIL