Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Small Methods ; 7(11): e2300752, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37702111

ABSTRACT

Two-dimensional metal-organic frameworks (MOFs) occupy a special place among the large family of functional 2D materials. Even at a monolayer level, 2D MOFs exhibit unique sensing, separation, catalytic, electronic, and conductive properties due to the combination of porosity and organo-inorganic nature. However, lab-to-fab transfer for 2D MOF layers faces the challenge of their scalability, limited by weak interactions between the organic and inorganic building blocks. Here, comparing three top-down approaches to fabricate 2D MOF layers (sonication, freeze-thaw, and mechanical exfoliation), The technological criteria have established for creation of the layers of the thickness up to 1 nm with a record aspect ratio up to 2*10^4:1. The freezing-thaw and mechanical exfoliation are the most optimal approaches; wherein the rate and manufacturability of the mechanical exfoliation rivaling the greatest scalability of 2D MOF layers obtained by freezing-thaw (21300:1 vs 1330:1 aspect ratio), leaving the sonication approach behind (with a record 900:1 aspect ratio) have discovered. The high quality 2D MOF layers with a record aspect ratio demonstrate unique optical sensitivity to solvents of a varied polarity, which opens the way to fabricate scalable and freestanding 2D MOF-based atomically thin chemo-optical sensors by industry-oriented approach.

2.
Adv Colloid Interface Sci ; 298: 102548, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34757247

ABSTRACT

Recently, nanomaterials demonstrating optical response under illumination, the so-called optically responsive nanoparticles (NPs), have found their broad application as optical switchers, gas adsorbents, data storage devices, and optical and biological sensors. Unique optical properties of such nanomaterials are strongly related to their chemical composition, geometrical parameters and morphology. Microfluidic approaches for NPs' synthesis allow overcoming the known critical stages in conventional synthesis of NPs due to a high rate of heat/mass transfer and precise regulation of synthesis conditions, which results in reproducible synthesis outcomes with the desired physico-chemical properties. Here, we review the recent advances in microfluidic approach for synthesis of optically responsive nanomaterials (plasmonic, photoluminescent, shape-changeable NPs), highlighting the general background of microfluidics, common considerations in the design of microfluidic chips (MFCs), and theoretical models of the NPs' formation mechanisms. Comparative analysis of microfluidic synthesis with conventional synthesis methods is provided further, along with the recent applications of optically responsive NPs in nano- and biophotonics.


Subject(s)
Nanoparticles , Nanostructures , Microfluidics
SELECTION OF CITATIONS
SEARCH DETAIL