Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37631060

ABSTRACT

BACKGROUND: Age-associated changes in epidermal hydration, pigmentation, thickness and cell renewal influence skin appearance and can lead to laxity, dryness and poor skin tone. The aim of this pilot study was to assess the synergistic effects of a new bipolar radiofrequency plus non-crosslinked hyaluronic acid (HA) mesotherapy protocol compared with radiofrequency alone on skin appearance and markers of epidermal function. METHODS: This prospective, single-center, split-face pilot study recruited women aged 25-65 years with dryness and laxity of the facial skin defined by a trans-epidermal water loss (TEWL) value of ≥26 g/m2/h. Subjects were treated with a bipolar radiofrequency device on both sides of the face. This was immediately followed by needle hyaluronic acid (HA) treatment on one side of the face with 2.5 mL of a non-crosslinked HA. Photographic documentation, analysis of epidermal barrier function parameters, and high frequency (HF) ultrasound analysis were performed prior to treatment and at 28 days. RESULTS: Twenty female subjects with a mean age of 46 (range 29 to 54) years and dry and lax facial skin were included. TEWL was reduced and skin hydration improved to a greater extent with the combined radiofrequency plus mesotherapy protocol compared with radiofrequency alone (-5.8% vs. +3.9% and +23.1% vs. +1.0%, respectively). The combined protocol was also associated with greater improvements in melanin (-7.5% vs. -1.5%) and erythema values (-7.2% vs. +3.0%), respectively. Ultrasound measures of epidermal thickness and epidermal density were greater after the combined protocol compared with radiofrequency alone (12.0% vs. 5.6% and 57.7% vs. 7.1%, respectively). Both treatments were well-tolerated. CONCLUSIONS: The combined bipolar radiofrequency and HA mesotherapy protocol provided greater improvements in skin hydration, firmness and tone compared with radiofrequency alone. The combination treatment was also associated with greater epidermal thickness and density and increased keratinocyte differentiation suggesting a synergistic effect of both treatments on epidermal homeostasis and barrier function. Both treatments were well-tolerated and led to improvements in facial appearance.

2.
Comput Med Imaging Graph ; 95: 102023, 2022 01.
Article in English | MEDLINE | ID: mdl-34883364

ABSTRACT

This study proposes a novel, fully automated framework for epidermal layer segmentation in different skin diseases based on 75 MHz high-frequency ultrasound (HFUS) image data. A robust epidermis segmentation is a vital first step to detect changes in thickness, shape, and intensity and therefore support diagnosis and treatment monitoring in inflammatory and neoplastic skin lesions. Our framework links deep learning and fuzzy connectedness for image analysis. It consists of a cascade of two DeepLab v3+ models with a ResNet-50 backbone and a fuzzy connectedness analysis module for fine segmentation. Both deep models are pre-trained on the ImageNet dataset and subjected to transfer learning using our HFUS database of 580 images with atopic dermatitis, psoriasis and non-melanocytic skin tumors. The first deep model is used to detect the appropriate region of interest, while the second stands for the main segmentation procedure. We use the softmax layer of the latter twofold to prepare the input data for fuzzy connectedness analysis: as a reservoir of seed points and a direct contribution to the input image. In the experiments, we analyze different configurations of the framework, including region of interest detection, deep model backbones and training loss functions, or fuzzy connectedness analysis with parameter settings. We also use the Dice index and epidermis thickness to compare our results to state-of-the-art approaches. The Dice index of 0.919 yielded by our model over the entire dataset (and exceeding 0.93 in inflammatory diseases) proves its superiority over the other methods.


Subject(s)
Dermatitis, Atopic , Image Processing, Computer-Assisted , Epidermis/diagnostic imaging , Fuzzy Logic , Humans , Image Processing, Computer-Assisted/methods , Skin/diagnostic imaging , Ultrasonography/methods
3.
Sensors (Basel) ; 21(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502735

ABSTRACT

This study presents the first application of convolutional neural networks to high-frequency ultrasound skin image classification. This type of imaging opens up new opportunities in dermatology, showing inflammatory diseases such as atopic dermatitis, psoriasis, or skin lesions. We collected a database of 631 images with healthy skin and different skin pathologies to train and assess all stages of the methodology. The proposed framework starts with the segmentation of the epidermal layer using a DeepLab v3+ model with a pre-trained Xception backbone. We employ transfer learning to train the segmentation model for two purposes: to extract the region of interest for classification and to prepare the skin layer map for classification confidence estimation. For classification, we train five models in different input data modes and data augmentation setups. We also introduce a classification confidence level to evaluate the deep model's reliability. The measure combines our skin layer map with the heatmap produced by the Grad-CAM technique designed to indicate image regions used by the deep model to make a classification decision. Moreover, we propose a multicriteria model evaluation measure to select the optimal model in terms of classification accuracy, confidence, and test dataset size. The experiments described in the paper show that the DenseNet-201 model fed with the extracted region of interest produces the most reliable and accurate results.


Subject(s)
Deep Learning , Diagnostic Imaging , Neural Networks, Computer , Reproducibility of Results , Ultrasonography
4.
Ultrasonics ; 114: 106412, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33784575

ABSTRACT

Monitoring skin layers with medical imaging is critical to diagnosing and treating patients with chronic inflammatory skin diseases. The high-frequency ultrasound (HFUS) makes it possible to monitor skin condition in different dermatoses. Accurate and reliable segmentation of skin layers in patients with atopic dermatitis or psoriasis enables the assessment of the treatment effect by the layer thickness measurements. The epidermis and the subepidermal low echogenic band (SLEB) are the most important for further diagnosis since their appearance is an indicator of different skin problems. In medical practice, the analysis, including segmentation, is usually performed manually by the physician with all drawbacks of such an approach, e.g., extensive time consumption and lack of repeatability. Recently, HFUS becomes common in dermatological practice, yet it is barely supported by the development of automated analysis tools. To meet the need for skin layer segmentation and measurement, we developed an automated segmentation method of both epidermis and SLEB layers. It consists of a fuzzy c-means clustering-based preprocessing step followed by a U-shaped convolutional neural network. The network employs batch normalization layers adjusting and scaling the activation to make the segmentation more robust. The obtained segmentation results are verified and compared to the current state-of-the-art methods addressing the skin layer segmentation. The obtained Dice coefficient equal to 0.87 and 0.83 for the epidermis and SLEB, respectively, proves the developed framework's efficiency, outperforming the other approaches.


Subject(s)
Deep Learning , Dermatitis, Atopic/diagnostic imaging , Image Processing, Computer-Assisted/methods , Psoriasis/diagnostic imaging , Ultrasonography/methods , Datasets as Topic , Humans
5.
Comput Med Imaging Graph ; 79: 101676, 2020 01.
Article in English | MEDLINE | ID: mdl-31841705

ABSTRACT

Skin diseases with an allergic background such as atopic dermatitis are commonly noticed in children. This requires an urgent need to develop an objective and non-invasive method to examine the skin condition before and during the therapy. The newest clinical research mention the benefit of using high frequency ultrasound to image inflammation of the skin. A characteristic feature of inflammatory dermatoses is the presence of a superficial hypoechoic band below the echo entry in high frequency ultrasound images. Its measurement can be useful in the assessment of atopic dermatitis. To meet this need, this paper presents a novel fully automatic method for the characteristic hypoechoic band segmentation. A three step methodology includes epidermis echo entry layer detection and segmentation and on this basis the segmentation of the sought skin abnormality. The algorithm is dedicated to 75MHz US probe, which enables visualisation of a skin area of a 12mm length and 4mm depth. The accuracy of the proposed framework was verified on 45 clinical images annotated by two independent experts. The obtained results prove the benefits of using the ultrasound-based skin disease assessment framework.


Subject(s)
Algorithms , Dermatitis, Atopic/diagnostic imaging , Diagnosis, Computer-Assisted , Ultrasonography/methods , Humans , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...