Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Front Psychiatry ; 14: 1077415, 2023.
Article in English | MEDLINE | ID: mdl-37139321

ABSTRACT

Introduction: Bipolar disorder (BD) is a chronic mental illness characterized by recurrent episodes of mania and depression and associated with social and cognitive disturbances. Environmental factors, such as maternal smoking and childhood trauma, are believed to modulate risk genotypes and contribute to the pathogenesis of BD, suggesting a key role in epigenetic regulation during neurodevelopment. 5-hydroxymethylcytosine (5hmC) is an epigenetic variant of particular interest, as it is highly expressed in the brain and is implicated in neurodevelopment, and psychiatric and neurological disorders. Methods: Induced pluripotent stem cells (iPSCs) were generated from the white blood cells of two adolescent patients with bipolar disorder and their same-sex age-matched unaffected siblings (n = 4). Further, iPSCs were differentiated into neuronal stem cells (NSCs) and characterized for purity using immuno-fluorescence. We used reduced representation hydroxymethylation profiling (RRHP) to perform genome-wide 5hmC profiling of iPSCs and NSCs, to model 5hmC changes during neuronal differentiation and assess their impact on BD risk. Functional annotation and enrichment testing of genes harboring differentiated 5hmC loci were performed with the online tool DAVID. Results: Approximately 2 million sites were mapped and quantified, with the majority (68.8%) located in genic regions, with elevated 5hmC levels per site observed for 3' UTRs, exons, and 2-kb shorelines of CpG islands. Paired t-tests of normalized 5hmC counts between iPSC and NSC cell lines revealed global hypo-hydroxymethylation in NSCs and enrichment of differentially hydroxymethylated sites within genes associated with plasma membrane (FDR = 9.1 × 10-12) and axon guidance (FDR = 2.1 × 10-6), among other neuronal processes. The most significant difference was observed for a transcription factor binding site for the KCNK9 gene (p = 8.8 × 10-6), encoding a potassium channel protein involved in neuronal activity and migration. Protein-protein-interaction (PPI) networking showed significant connectivity (p = 3.2 × 10-10) between proteins encoded by genes harboring highly differentiated 5hmC sites, with genes involved in axon guidance and ion transmembrane transport forming distinct sub-clusters. Comparison of NSCs of BD cases and unaffected siblings revealed additional patterns of differentiation in hydroxymethylation levels, including sites in genes with functions related to synapse formation and regulation, such as CUX2 (p = 2.4 × 10-5) and DOK-7 (p = 3.6 × 10-3), as well as an enrichment of genes involved in the extracellular matrix (FDR = 1.0 × 10-8). Discussion: Together, these preliminary results lend evidence toward a potential role for 5hmC in both early neuronal differentiation and BD risk, with validation and more comprehensive characterization to be achieved through follow-up study.

2.
Front Mol Neurosci ; 15: 817290, 2022.
Article in English | MEDLINE | ID: mdl-35392269

ABSTRACT

The use of easily accessible peripheral samples, such as blood or saliva, to investigate neurological and neuropsychiatric disorders is well-established in genetic and epigenetic research, but the pathological implications of such biomarkers are not easily discerned. To better understand the relationship between peripheral blood- and brain-based epigenetic activity, we conducted a pilot study on captive baboons (Papio hamadryas) to investigate correlations between miRNA expression in peripheral blood mononuclear cells (PBMCs) and 14 different cortical and subcortical brain regions, represented by two study groups comprised of 4 and 6 animals. Using next-generation sequencing, we identified 362 miRNAs expressed at ≥ 10 read counts in 80% or more of the brain samples analyzed. Nominally significant pairwise correlations (one-sided P < 0.05) between peripheral blood and mean brain expression levels of individual miRNAs were observed for 39 and 44 miRNAs in each group. When miRNA expression levels were averaged for tissue type across animals within the groups, Spearman's rank correlations between PBMCs and the brain regions are all highly significant (r s = 0.47-0.57; P < 2.2 × 10-16), although pairwise correlations among the brain regions are markedly stronger (r s = 0.86-0.99). Principal component analysis revealed differentiation in miRNA expression between peripheral blood and the brain regions for the first component (accounting for ∼75% of variance). Linear mixed effects modeling attributed most of the variance in expression to differences between miRNAs (>70%), with non-significant 7.5% and 13.1% assigned to differences between blood and brain-based samples in the two study groups. Hierarchical UPGMA clustering revealed a major co-expression branch in both study groups, comprised of miRNAs globally upregulated in blood relative to the brain samples, exhibiting an enrichment of miRNAs expressed in immune cells (CD14+, CD15+, CD19+, CD3+, and CD56 + leukocytes) among the top blood-brain correlates, with the gene MYC, encoding a master transcription factor that regulates angiogenesis and neural stem cell activation, representing the most prevalent miRNA target. Although some differentiation was observed between tissue types, these preliminary findings reveal wider correlated patterns between blood- and brain-expressed miRNAs, suggesting the potential utility of blood-based miRNA profiling for investigating by proxy certain miRNA activity in the brain, with implications for neuroinflammatory and c-Myc-mediated processes.

3.
Front Genet ; 12: 714282, 2021.
Article in English | MEDLINE | ID: mdl-34490042

ABSTRACT

In this study, we investigate the genetic determinants that underlie epilepsy in a captive baboon pedigree and evaluate the potential suitability of this non-human primate model for understanding the genetic etiology of human epilepsy. Archived whole-genome sequence data were analyzed using both a candidate gene approach that targeted variants in baboon homologs of 19 genes (n = 20,881 SNPs) previously implicated in genetic generalized epilepsy (GGE) and a more agnostic approach that examined protein-altering mutations genome-wide as assessed by snpEff (n = 36,169). Measured genotype association tests for baboon cases of epileptic seizure were performed using SOLAR, as well as gene set enrichment analyses (GSEA) and protein-protein interaction (PPI) network construction of top association hits genome-wide (p < 0.01; n = 441 genes). The maximum likelihood estimate of heritability for epileptic seizure in the pedigreed baboon sample is 0.76 (SE = 0.77; p = 0.07). Among candidate genes for GGE, a significant association was detected for an intronic SNP in RBFOX1 (p = 5.92 × 10-6; adjusted p = 0.016). For protein-altering variants, no genome-wide significant results were observed for epilepsy status. However, GSEA revealed significant positive enrichment for genes involved in the extracellular matrix structure (ECM; FDR = 0.0072) and collagen formation (FDR = 0.017), which was reflected in a major PPI network cluster. This preliminary study highlights the potential role of RBFOX1 in the epileptic baboon, a protein involved in transcriptomic regulation of multiple epilepsy candidate genes in humans and itself previously implicated in human epilepsy, both focal and generalized. Moreover, protein-damaging variants from across the genome exhibit a pattern of association that links collagen-containing ECM to epilepsy risk. These findings suggest a shared genetic etiology between baboon and human forms of GGE and lay the foundation for follow-up research.

4.
Eur J Hum Genet ; 28(6): 790-803, 2020 06.
Article in English | MEDLINE | ID: mdl-31996801

ABSTRACT

Phasing is the process of inferring haplotypes from genotype data. Efficient algorithms and associated software for accurate phasing in pedigrees are needed, especially for populations lacking reference panels of sequenced individuals. We present a novel method for phasing genotypes from whole-genome sequence data in pedigrees, called PULSAR (Phasing Using Lineage Specific Alleles/Rare variants). The method is based on the property that alleles specific to a single founding chromosome within a pedigree are highly informative for identifying haplotypes that are shared identical by descent. Simulation studies are used to assess the performance of PULSAR with various pedigree sizes and structures, and the effect of genotyping errors and the presence of nonsequenced individuals is investigated. In pedigrees with complete sequencing and realistic genotyping error rates, PULSAR correctly phases >99.9% of heterozygous genotypes, excluding sites at which all individuals are heterozygous, and does so with a switch error rate frequently below 10-4. PULSAR is highly accurate, capable of genotype error correction and imputation, and computationally competitive with alternative phasing software applicable to pedigrees. Our method has the significant advantage of not requiring reference panels that are essential for other population-based phasing algorithms. A software implementation of PULSAR is freely available.


Subject(s)
Genome-Wide Association Study/methods , Genotype , Genotyping Techniques/methods , Haplotypes , Pedigree , Whole Genome Sequencing/methods , Adult , Child , Chromosomes/genetics , Female , Founder Effect , Genome-Wide Association Study/standards , Genotyping Techniques/standards , Heterozygote , Humans , Male , Sensitivity and Specificity , Software/standards , Whole Genome Sequencing/standards
5.
Transl Psychiatry ; 8(1): 278, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546022

ABSTRACT

The dopaminergic hypothesis of schizophrenia (SZ) postulates that positive symptoms of SZ, in particular psychosis, are due to disturbed neurotransmission via the dopamine (DA) receptor D2 (DRD2). However, DA is a reactive molecule that yields various oxidative species, and thus has important non-receptor-mediated effects, with empirical evidence of cellular toxicity and neurodegeneration. Here we examine non-receptor-mediated effects of DA on gene co-expression networks and its potential role in SZ pathology. Transcriptomic profiles were measured by RNA-seq in B-cell transformed lymphoblastoid cell lines from 514 SZ cases and 690 controls, both before and after exposure to DA ex vivo (100 µM). Gene co-expression modules were identified using Weighted Gene Co-expression Network Analysis for both baseline and DA-stimulated conditions, with each module characterized for biological function and tested for association with SZ status and SNPs from a genome-wide panel. We identified seven co-expression modules under baseline, of which six were preserved in DA-stimulated data. One module shows significantly increased association with SZ after DA perturbation (baseline: P = 0.023; DA-stimulated: P = 7.8 × 10-5; ΔAIC = -10.5) and is highly enriched for genes related to ribosomal proteins and translation (FDR = 4 × 10-141), mitochondrial oxidative phosphorylation, and neurodegeneration. SNP association testing revealed tentative QTLs underlying module co-expression, notably at FASTKD2 (top P = 2.8 × 10-6), a gene involved in mitochondrial translation. These results substantiate the role of translational machinery in SZ pathogenesis, providing insights into a possible dopaminergic mechanism disrupting mitochondrial function, and demonstrates the utility of disease-relevant functional perturbation in the study of complex genetic etiologies.


Subject(s)
Dopamine/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Schizophrenia/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Line , Dopamine/administration & dosage , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Schizophrenia/metabolism , Sequence Analysis, RNA , Transcriptome , Young Adult
6.
Hum Hered ; 83(2): 92-99, 2018.
Article in English | MEDLINE | ID: mdl-30391948

ABSTRACT

OBJECTIVES: An interesting consequence of consanguinity is that the inbred singleton becomes informative for genetic variance. We determine the contribution of an inbred singleton to variance component analysis of heritability and linkage. METHODS: Statistical theory for the power of variance component analysis of quantitative traits is used to determine the expected contribution of an inbred singleton to likelihood-ratio tests of heritability and linkage. RESULTS: In variance component models, an inbred singleton contributes relatively little to a test of heritability but can contribute substantively to a test of linkage. For small-to-moderate quantitative trait locus (QTL) effects and a level of inbreeding comparable to matings between first cousins (the preferred form of union in many human populations), an inbred singleton can carry nearly 25% of the information of a non-inbred sib pair. In more highly inbred contexts available with experimental animal populations, nonhuman primate colonies, and some human subpopulations, the contribution of an inbred singleton relative to a sib pair can exceed 50%. CONCLUSIONS: Inbred individuals, even in isolation from other members of a sample, can contribute to variance component estimation and tests of heritability and linkage. Under certain conditions, the informativeness of the inbred singleton can approach that of a non-inbred sib pair.


Subject(s)
Consanguinity , Models, Genetic , Genetic Linkage , Genetic Variation , Humans
7.
Data Brief ; 17: 820-829, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29527544

ABSTRACT

Carotid Intima-media thickness (CIMT) and plaque are well established markers of subclinical atherosclerosis and are widely used for identifying subclinical atherosclerotic disease. We performed association analyses using Metabochip array to identify genetic variants that influence variation in CIMT and plaque, measured using B-mode ultrasonography, in rheumatoid arthritis (RA) patients. Data on genetic associations of common variants associated with both CIMT and plaque in RA subjects involving Mexican Americans (MA) and European Americans (EA) populations are presented in this article. Strong associations were observed after adjusting for covariate effects including baseline clinical characteristics and statin use. Susceptibility loci and genes and/or nearest genes associated with CIMT in MAs and EAs with RA are presented. In addition, common susceptibility loci influencing CIMT and plaque in both MAs and EAs have been presented. Polygenic Risk Score (PRS) plots showing complementary evidence for the observed CIMT and plaque association signals are also shown in this article. For further interpretation and details, please see the research article titled "A Genetic Association Study of Carotid Intima-Media Thickness (CIMT) and Plaque in Mexican Americans and European Americans with Rheumatoid Arthritis" which is being published in Atherosclerosis (Arya et al., 2018) [1].(Arya et al., in press) Thus, common variants in several genes exhibited significant associations with CIMT and plaque in both MAs and EAs as presented in this article. These findings may help understand the genetic architecture of subclinical atherosclerosis in RA populations.

8.
Atherosclerosis ; 271: 92-101, 2018 04.
Article in English | MEDLINE | ID: mdl-29482039

ABSTRACT

BACKGROUND AND AIMS: Little is known about specific genetic determinants of carotid-intima-media thickness (CIMT) and carotid plaque in subjects with rheumatoid arthritis (RA). We have used the Metabochip array to fine map and replicate loci that influence variation in these phenotypes in Mexican Americans (MAs) and European Americans (EAs). METHODS: CIMT and plaque were measured using ultrasound from 700 MA and 415 EA patients with RA and we conducted association analyses with the Metabochip single nucleotide polymorphism (SNP) data using PLINK. RESULTS: In MAs, 12 SNPs from 11 chromosomes and 6 SNPs from 6 chromosomes showed suggestive associations (p < 1 × 10-4) with CIMT and plaque, respectively. The strongest association was observed between CIMT and rs17526722 (SLC17A2 gene) (ß ± SE = -0.84 ± 0.18, p = 3.80 × 10-6). In EAs, 9 SNPs from 7 chromosomes and 7 SNPs from 7 chromosomes showed suggestive associations with CIMT and plaque, respectively. The top association for CIMT was observed with rs1867148 (PPCDC gene, ß ± SE = -0.28 ± 0.06, p = 5.11 × 10-6). We also observed strong association between plaque and two novel loci: rs496916 from COL4A1 gene (OR = 0.51, p = 3.15 × 10-6) in MAs and rs515291 from SLCA13 gene (OR = 0.50, p = 3.09 × 10-5) in EAs. CONCLUSIONS: We identified novel associations between CIMT and variants in SLC17A2 and PPCDC genes, and between plaque and variants from COL4A1 and SLCA13 that may pinpoint new candidate risk loci for subclinical atherosclerosis associated with RA.


Subject(s)
Arthritis, Rheumatoid/ethnology , Carotid Arteries/diagnostic imaging , Carotid Artery Diseases/ethnology , Carotid Artery Diseases/genetics , Carotid Intima-Media Thickness , Mexican Americans/genetics , Plaque, Atherosclerotic , Polymorphism, Single Nucleotide , White People/genetics , Aged , Arthritis, Rheumatoid/diagnosis , Carboxy-Lyases/genetics , Carotid Artery Diseases/diagnostic imaging , Female , Gene Expression Profiling/methods , Genetic Association Studies , Genetic Predisposition to Disease , Glucose Transport Proteins, Facilitative/genetics , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Phenotype , Predictive Value of Tests , Risk Assessment , Risk Factors , Sodium-Phosphate Cotransporter Proteins, Type I/genetics , Texas/epidemiology
9.
Am J Med Genet B Neuropsychiatr Genet ; 174(8): 817-827, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28902459

ABSTRACT

Schizophrenia is a serious mental illness, involving disruptions in thought and behavior, with a worldwide prevalence of about one percent. Although highly heritable, much of the genetic liability of schizophrenia is yet to be explained. We searched for susceptibility loci in multiplex, multigenerational families affected by schizophrenia, targeting protein-altering variation with in silico predicted functional effects. Exome sequencing was performed on 136 samples from eight European-American families, including 23 individuals diagnosed with schizophrenia or schizoaffective disorder. In total, 11,878 non-synonymous variants from 6,396 genes were tested for their association with schizophrenia spectrum disorders. Pathway enrichment analyses were conducted on gene-based test results, protein-protein interaction (PPI) networks, and epistatic effects. Using a significance threshold of FDR < 0.1, association was detected for rs10941112 (p = 2.1 × 10-5 ; q-value = 0.073) in AMACR, a gene involved in fatty acid metabolism and previously implicated in schizophrenia, with significant cis effects on gene expression (p = 5.5 × 10-4 ), including brain tissue data from the Genotype-Tissue Expression project (minimum p = 6.0 × 10-5 ). A second SNP, rs10378 located in TMEM176A, also shows risk effects in the exome data (p = 2.8 × 10-5 ; q-value = 0.073). PPIs among our top gene-based association results (p < 0.05; n = 359 genes) reveal significant enrichment of genes involved in NCAM-mediated neurite outgrowth (p = 3.0 × 10-5 ), while exome-wide SNP-SNP interaction effects for rs10941112 and rs10378 indicate a potential role for kinase-mediated signaling involved in memory and learning. In conclusion, these association results implicate AMACR and TMEM176A in schizophrenia risk, whose effects may be modulated by genes involved in synaptic plasticity and neurocognitive performance.


Subject(s)
Exome , Genetic Markers , Neurocognitive Disorders/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Family , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Mental Status and Dementia Tests , Middle Aged , Neurocognitive Disorders/diagnosis , Neurocognitive Disorders/epidemiology , Risk Factors , Schizophrenia/complications , Young Adult
10.
Schizophr Bull ; 42(2): 288-300, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26405221

ABSTRACT

Schizophrenia is a mental disorder characterized by impairments in behavior, thought, and neurocognitive performance. We searched for susceptibility loci at a quantitative trait locus (QTL) previously reported for abstraction and mental flexibility (ABF), a cognitive function often compromised in schizophrenia patients and their unaffected relatives. Exome sequences were determined for 134 samples in 8 European American families from the original linkage study, including 25 individuals with schizophrenia or schizoaffective disorder. At chromosome 5q32-35.3, we analyzed 407 protein-altering variants for association with ABF and schizophrenia status. For replication, significant, Bonferroni-corrected findings were tested against cognitive traits in Mexican American families (n = 959), as well as interrogated for schizophrenia risk using GWAS results from the Psychiatric Genomics Consortium (PGC). From the gene SYNPO, rs6579797 (MAF = 0.032) shows significant associations with ABF (P = .015) and schizophrenia (P = .040), as well as jointly (P = .0027). In the Mexican American pedigrees, rs6579797 exhibits significant associations with IQ (P = .011), indicating more global effects on neurocognition. From the PGC results, other SYNPO variants were identified with near significant effects on schizophrenia risk, with a local linkage disequilibrium block displaying signatures of positive selection. A second missense variant within the QTL, rs17551608 (MAF = 0.19) in the gene WWC1, also displays a significant effect on schizophrenia in our exome sequences (P = .038). Remarkably, the protein products of SYNPO and WWC1 are interaction partners involved in AMPA receptor trafficking, a brain process implicated in synaptic plasticity. Our study reveals variants in these genes with significant effects on neurocognition and schizophrenia risk, identifying a potential pathogenic mechanism for schizophrenia spectrum disorders.


Subject(s)
Cognition Disorders/genetics , Exome/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Receptors, Glutamate/metabolism , Schizophrenia/genetics , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Microfilament Proteins/genetics , Pedigree , Phosphoproteins/genetics , Quantitative Trait Loci
11.
Hum Mol Genet ; 24(18): 5330-44, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26101197

ABSTRACT

Although DNA methylation is now recognized as an important mediator of complex diseases, the extent to which the genetic basis of such diseases is accounted for by DNA methylation is unknown. In the setting of large, extended families representing a minority, high-risk population of the USA, we aimed to characterize the role of epigenome-wide DNA methylation in type 2 diabetes (T2D). Using Illumina HumanMethylation450 BeadChip arrays, we tested for association of DNA methylation at 446 356 sites with age, sex and phenotypic traits related to T2D in 850 pedigreed Mexican-American individuals. Robust statistical analyses showed that (i) 15% of the methylome is significantly heritable, with a median heritability of 0.14; (ii) DNA methylation at 14% of CpG sites is associated with nearby sequence variants; (iii) 22% and 3% of the autosomal CpG sites are associated with age and sex, respectively; (iv) 53 CpG sites were significantly associated with liability to T2D, fasting blood glucose and insulin resistance; (v) DNA methylation levels at five CpG sites, mapping to three well-characterized genes (TXNIP, ABCG1 and SAMD12) independently explained 7.8% of the heritability of T2D (vi) methylation at these five sites was unlikely to be influenced by neighboring DNA sequence variation. Our study has identified novel epigenetic indicators of T2D risk in Mexican Americans who have increased risk for this disease. These results provide new insights into potential treatment targets of T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Epigenesis, Genetic , Mexican Americans/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Chromosome Mapping , CpG Islands , DNA Methylation , Diabetes Mellitus, Type 2/epidemiology , Epigenomics , Female , Gene Expression Profiling , Genetic Association Studies , Genome-Wide Association Study , Humans , Inheritance Patterns , Insulin Resistance/genetics , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Risk Factors , Sex Factors , Texas/epidemiology , Texas/ethnology , Young Adult
12.
Am J Med Genet B Neuropsychiatr Genet ; 165B(4): 294-302, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24692236

ABSTRACT

Linkage studies of alcoholism have implicated several chromosome regions, leading to the successful identification of susceptibility genes, including ADH4 and GABRA2 on chromosome 4. Quantitative endophenotypes that are potentially closer to gene action than clinical endpoints offer a means of obtaining more refined linkage signals of genes that predispose alcohol use disorders (AUD). In this study we examine a self-reported measure of the maximum number of drinks consumed in a 24-hr period (abbreviated Max Drinks), a significantly heritable phenotype (h(2) = 0.32 ± 0.05; P = 4.61 × 10(-14)) with a strong genetic correlation with AUD (ρg = 0.99 ± 0.13) for the San Antonio Family Study (n = 1,203). Genome-wide SNPs were analyzed using variance components linkage methods in the program SOLAR, revealing a novel, genome-wide significant QTL (LOD = 4.17; P = 5.85 × 10(-6)) for Max Drinks at chromosome 6p22.3, a region with a number of compelling candidate genes implicated in neuronal function and psychiatric illness. Joint analysis of Max Drinks and AUD status shows that the QTL has a significant non-zero effect on diagnosis (P = 4.04 × 10(-3)), accounting for 8.6% of the total variation. Significant SNP associations for Max Drinks were also identified at the linkage region, including one, rs7761213 (P = 2.14 × 10(-4)), obtained for an independent sample of Chinese families. Thus, our study identifies a potential risk locus for AUD at 6p22.3, with significant pleiotropic effects on the heaviness of alcohol consumption that may not be population specific.


Subject(s)
Alcohol Drinking/genetics , Alcoholism/genetics , Chromosomes, Human, Pair 6/genetics , Genetic Predisposition to Disease , Quantitative Trait Loci/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Endophenotypes , Female , Genetic Association Studies , Genetic Linkage , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Young Adult
13.
Addict Biol ; 19(4): 708-21, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23362995

ABSTRACT

Family-based and genome-wide association studies (GWAS) of alcohol dependence (AD) have reported numerous associated variants. The clinical validity of these variants for predicting AD compared with family history information has not been reported. Using the Collaborative Study on the Genetics of Alcoholism (COGA) and the Study of Addiction: Genes and Environment (SAGE) GWAS samples, we examined the aggregate impact of multiple single nucleotide polymorphisms (SNPs) on risk prediction. We created genetic sum scores by adding risk alleles associated in discovery samples, and then tested the scores for their ability to discriminate between cases and controls in validation samples. Genetic sum scores were assessed separately for SNPs associated with AD in candidate gene studies and SNPs from GWAS analyses that met varying P-value thresholds. Candidate gene sum scores did not exhibit significant predictive accuracy. Family history was a better classifier of case-control status, with a significant area under the receiver operating characteristic curve (AUC) of 0.686 in COGA and 0.614 in SAGE. SNPs that met less stringent P-value thresholds of 0.01-0.50 in GWAS analyses yielded significant AUC estimates, ranging from mean estimates of 0.549 for SNPs with P < 0.01 to 0.565 for SNPs with P < 0.50. This study suggests that SNPs currently have limited clinical utility, but there is potential for enhanced predictive ability with better understanding of the large number of variants that might contribute to risk.


Subject(s)
Alcoholism/genetics , Genetic Association Studies/methods , Genetic Association Studies/statistics & numerical data , Genetic Predisposition to Disease/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Female , Genetic Counseling , Genome-Wide Association Study/methods , Genome-Wide Association Study/statistics & numerical data , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , ROC Curve , Reproducibility of Results , Risk , United States , Young Adult
14.
PLoS One ; 8(9): e73950, 2013.
Article in English | MEDLINE | ID: mdl-24058506

ABSTRACT

Several studies have identified effects of genetic variation on DNA methylation patterns and associated heritability, with research primarily focused on Caucasian individuals. In this paper, we examine the evidence for genetic effects on DNA methylation in a Mexican American cohort, a population burdened by a high prevalence of obesity. Using an Illumina-based platform and following stringent quality control procedures, we assessed a total of 395 CpG sites in peripheral blood samples obtained from 183 Mexican American individuals for evidence of heritability, proximal genetic regulation and association with age, sex and obesity measures (i.e. waist circumference and body mass index). We identified 16 CpG sites (~4%) that were significantly heritable after Bonferroni correction for multiple testing and 27 CpG sites (~6.9%) that showed evidence of genetic effects. Six CpG sites (~2%) were associated with age, primarily exhibiting positive relationships, including CpG sites in two genes that have been implicated in previous genome-wide methylation studies of age (FZD9 and MYOD1). In addition, we identified significant associations between three CpG sites (~1%) and sex, including DNA methylation in CASP6, a gene that may respond to estradiol treatment, and in HSD17B12, which encodes a sex steroid hormone. Although we did not identify any significant associations between DNA methylation and the obesity measures, several nominally significant results were observed in genes related to adipogenesis, obesity, energy homeostasis and glucose homeostasis (ARHGAP9, CDKN2A, FRZB, HOXA5, JAK3, MEST, NPY, PEG3 and SMARCB1). In conclusion, we were able to replicate several findings from previous studies in our Mexican American cohort, supporting an important role for genetic effects on DNA methylation. In addition, we found a significant influence of age and sex on DNA methylation, and report on trend-level, novel associations between DNA methylation and measures of obesity.


Subject(s)
17-Hydroxysteroid Dehydrogenases/genetics , Caspase 6/genetics , DNA Methylation , Mexican Americans , Obesity/ethnology , Obesity/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Age Factors , Body Mass Index , Caspase 6/metabolism , CpG Islands , Female , Gene Expression Regulation , Genetic Variation , Genome-Wide Association Study , Humans , Inheritance Patterns , Male , Middle Aged , Obesity/metabolism , Obesity/physiopathology , Sex Factors
15.
Am J Med Genet B Neuropsychiatr Genet ; 162B(2): 96-121, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23341144

ABSTRACT

The XXth World Congress of Psychiatric Genetics (WCPG), sponsored by The International Society of Psychiatric Genetics (ISPG) took place in Hamburg, Germany on October 14-18, 2012. Approximately 600 participants gathered to discuss the latest findings in this rapidly advancing field. The following report was written by student travel awardees. Each was assigned sessions as rapporteurs. This manuscript represents topics covered in most, but not all, oral presentations during the conference, and some of the major notable new findings reported at this 2012 WCPG.


Subject(s)
Mental Disorders/genetics , Animals , Brain/pathology , Disease Models, Animal , Drug Discovery , Endophenotypes , Epigenesis, Genetic , Genetic Testing , Genetic Variation , Genome, Human/genetics , Genome-Wide Association Study , Germany , Humans , Inheritance Patterns/genetics , Magnetic Resonance Imaging , Mice , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...