Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(29): 18035-18039, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32743177

ABSTRACT

Splice-modulating antisense therapy has shown tremendous potential in therapeutic development in recent years with four FDA-approved antisense drugs since 2016. However, an efficient and nontoxic antisense oligonucleotide (AO) delivery system still remains as a major obstacle in nucleic acid therapeutics field. Vitamin-E (α-tocopherol) is an essential dietary requirement for human body. This fat-soluble compound is one of the most important antioxidants which involves in numerous biological pathways. In this study, for the first time, we explored the scope of using α-tocopherol-conjugated bioresponsive AOs to induce splice modulation in mouse muscle myotubes in vitro. Our results showed that the bioresponsive construct efficiently internalized into the cell nucleus and induced exon 23 skipping in mdx mouse myotubes. Based on our exciting new results, we firmly believe that our findings could potentially benefit toward establishing a delivery approach to advance the field of splice-modulating AO therapy.

2.
Sci Rep ; 10(1): 6669, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32300155

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 6078, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988454

ABSTRACT

Antisense oligonucleotide (AO)-mediated splice modulation has been established as a therapeutic approach for tackling genetic diseases. Recently, Exondys51, a drug that aims to correct splicing defects in the dystrophin gene was approved by the US Food and Drug Administration (FDA) for the treatment of Duchenne muscular dystrophy (DMD). However, Exondys51 has relied on phosphorodiamidate morpholino oligomer (PMO) chemistry which poses challenges in the cost of production and compatibility with conventional oligonucleotide synthesis procedures. One approach to overcome this problem is to construct the AO with alternative nucleic acid chemistries using solid-phase oligonucleotide synthesis via standard phosphoramidite chemistry. 2'-Fluoro (2'-F) is a potent RNA analogue that possesses high RNA binding affinity and resistance to nuclease degradation with good safety profile, and an approved drug Macugen containing 2'-F-modified pyrimidines was approved for the treatment of age-related macular degeneration (AMD). In the present study, we investigated the scope of 2'-F nucleotides to construct mixmer and gapmer exon skipping AOs with either 2'-O-methyl (2'-OMe) or locked nucleic acid (LNA) nucleotides on a phosphorothioate (PS) backbone, and evaluated their efficacy in inducing exon-skipping in mdx mouse myotubes in vitro. Our results showed that all AOs containing 2'-F nucleotides induced efficient exon-23 skipping, with LNA/2'-F chimeras achieving better efficiency than the AOs without LNA modification. In addition, LNA/2'-F chimeric AOs demonstrated higher exonuclease stability and lower cytotoxicity than the 2'-OMe/2'-F chimeras. Overall, our findings certainly expand the scope of constructing 2'-F modified AOs in splice modulation by incorporating 2'-OMe and LNA modifications.


Subject(s)
Muscle Fibers, Skeletal/drug effects , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense/pharmacology , RNA Splicing/drug effects , Animals , Cells, Cultured , Chemistry Techniques, Synthetic/economics , Chemistry Techniques, Synthetic/methods , Chemistry, Pharmaceutical/economics , Chemistry, Pharmaceutical/methods , Drug Evaluation, Preclinical , Dystrophin/genetics , Dystrophin/metabolism , Exons/drug effects , Exons/genetics , Genetic Therapy/economics , Genetic Therapy/methods , Humans , Mice , Mice, Inbred mdx , Morpholinos/economics , Morpholinos/therapeutic use , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/chemistry , Oligonucleotides/economics , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/economics , Oligonucleotides, Antisense/therapeutic use
4.
Mol Ther Nucleic Acids ; 14: 142-157, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30594893

ABSTRACT

Cancer is one of the leading causes of death worldwide, and conventional cancer therapies such as surgery, chemotherapy, and radiotherapy do not address the underlying molecular pathologies, leading to inadequate treatment and tumor recurrence. Angiogenic factors, such as EGF, PDGF, bFGF, TGF-ß, TGF-α, VEGF, endoglin, and angiopoietins, play important roles in regulating tumor development and metastasis, and they serve as potential targets for developing cancer therapeutics. Nucleic acid-based therapeutic strategies have received significant attention in the last two decades, and antisense oligonucleotide-mediated intervention is a prominent therapeutic approach for targeted manipulation of gene expression. Clinical benefits of antisense oligonucleotides have been recognized by the U.S. Food and Drug Administration, with full or conditional approval of Vitravene, Kynamro, Exondys51, and Spinraza. Herein we review the scope of antisense oligonucleotides that target angiogenic factors toward tackling solid cancers.

5.
Org Biomol Chem ; 13(18): 5115-21, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25833006

ABSTRACT

G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.


Subject(s)
DNA/chemistry , Oligonucleotides/chemistry , Circular Dichroism , Models, Molecular , Temperature
6.
Bioorg Med Chem ; 23(10): 2458-69, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25868748

ABSTRACT

The phosphoramidites of DNA monomers of 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine (Y) and 7-(3-aminopropyn-1-yl)-8-aza-7-deazaadenine LNA (Z) are synthesized, and the thermal stability at pH 7.2 and 8.2 of anti-parallel triplexes modified with these two monomers is determined. When, the anti-parallel TFO strand was modified with Y with one or two insertions at the end of the TFO strand, the thermal stability was increased 1.2°C and 3°C at pH 7.2, respectively, whereas one insertion in the middle of the TFO strand decreased the thermal stability 1.4°C compared to the wild type oligonucleotide. In order to be sure that the 3-aminopropyn-1-yl chain was contributing to the stability of the triplex, the nucleobase X without the aminopropynyl group was inserted in the same positions. In all cases the thermal stability was lower than the corresponding oligonucleotides carrying the 3-aminopropyn-1-yl chain, especially at the end of the TFO strand. On the other hand, the thermal stability of the anti-parallel triplex was dramatically decreased when the TFO strand was modified with the LNA monomer analog Z in the middle of the TFO strand (ΔTm=-9.1°C). Also the thermal stability decreased about 6.1°C when the TFO strand was modified with Z and the Watson-Crick strand with adenine-LNA (A(L)). The molecular modeling results showed that, in case of nucleobases Y and Z a hydrogen bond (1.69 and 1.72Ǻ, respectively) was formed between the protonated 3-aminopropyn-1-yl chain and one of the phosphate groups in Watson-Crick strand. Also, it was shown that the nucleobase Y made a good stacking and binding with the other nucleobases in the TFO and Watson-Crick duplex, respectively. In contrast, the nucleobase Z with LNA moiety was forced to twist out of plane of Watson-Crick base pair which is weakening the stacking interactions with the TFO nucleobases and the binding with the duplex part.


Subject(s)
Adenine/analogs & derivatives , Oligonucleotides/chemical synthesis , Adenine/chemical synthesis , Base Pairing , Base Sequence , Drug Stability , Hydrogen Bonding , Hydrogen-Ion Concentration , Molecular Conformation , Molecular Sequence Data , Organophosphorus Compounds/chemistry , Propylamines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...