Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 382(6677): eadi1407, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38127734

ABSTRACT

A closed-loop, autonomous molecular discovery platform driven by integrated machine learning tools was developed to accelerate the design of molecules with desired properties. We demonstrated two case studies on dye-like molecules, targeting absorption wavelength, lipophilicity, and photooxidative stability. In the first study, the platform experimentally realized 294 unreported molecules across three automatic iterations of molecular design-make-test-analyze cycles while exploring the structure-function space of four rarely reported scaffolds. In each iteration, the property prediction models that guided exploration learned the structure-property space of diverse scaffold derivatives, which were realized with multistep syntheses and a variety of reactions. The second study exploited property models trained on the explored chemical space and previously reported molecules to discover nine top-performing molecules within a lightly explored structure-property space.

2.
ACS Cent Sci ; 9(2): 307-317, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36844498

ABSTRACT

Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors' hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC-DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA's data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA's peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities.

3.
Nat Commun ; 12(1): 1860, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33767138

ABSTRACT

Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in such materials are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in colloidal semiconductor nanocrystals. Investigation of the excitation energy dependence in a core/shell system shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap of the core in the same system result in transient lattice heating that occurs on a much longer 200 picosecond timescale, dominated by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.

4.
Nano Lett ; 20(5): 3178-3184, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32353239

ABSTRACT

Active fibers with electro-optic functionalities are promising building blocks for the emerging and rapidly growing field of fiber and textile electronics. Yet, there remains significant challenges that require improved understanding of the principles of active fiber assembly to enable the development of fiber-shaped devices characterized by having a small diameter, being lightweight, and having high mechanical strength. To this end, the current frameworks are insufficient, and new designs and fabrication approaches are essential to accommodate this unconventional form factor. Here, we present a first demonstration of a pathway that effectively integrates the foundational components meeting such requirements, with the use of a flexible and robust conductive core carbon nanotube fiber and an organic-inorganic emissive composite layer as the two critical elements. We introduce an active fiber design that can be realized through an all solution-processed approach. We have implemented this technique to demonstrate a three-layered light-emitting fiber with a coaxially coated design.

5.
ACS Nano ; 13(10): 11825-11833, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31553569

ABSTRACT

Reliably accessing nanocrystal luminophores with near-unity efficiencies aids in the ability to understand the upper performance limits in optoelectronic applications that require minimal nonradiative losses. Constructing structure-function relationships at the atomic level, while accounting for inevitable defects, allows for the development of robust strategies to achieve near-unity quantum yield luminophores. For CsPbBr3 perovskite nanocrystals, bromine vacancies leave behind undercoordinated lead atoms that act as traps, limiting the achievable optical performance of the material. We show that selective etching represents a promising path for mitigating the consequences of optical defects in CsPbBr3 nanocrystals. A mechanistic understanding of the etching reaction is essential for developing strategies to finely control the reaction. We report a study of the selective etching mechanism of CsPbBr3 nanocrystal cubes by controlling the etchant chemical potential. We observe optical absorption and luminescence trajectories while varying the extent and rate of lead removal, removing in some cases up to 75% of the lead from the original nanocrystal ensemble. At modest etchant chemical potentials, the size and shape uniformity of the nanocrystal ensemble improves in addition to the quantum yield, proceeding through a layer-by-layer etching mechanism. Operating with excessively high etchant chemical potentials is detrimental to the overall optical performance as the etching transitions to nonselective, while too low of a chemical potential results in incomplete etching. Through this general approach, we show how to finely control selective etching to consistently access a steady state or chemical stability zone of near-unity quantum yield CsPbBr3 nanocrystals postsynthetically, suggesting a practical framework to extend this treatment to other perovskite compositions and sizes.

6.
Science ; 363(6432): 1199-1202, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30872520

ABSTRACT

A variety of optical applications rely on the absorption and reemission of light. The quantum yield of this process often plays an essential role. When the quantum yield deviates from unity by significantly less than 1%, applications such as luminescent concentrators and optical refrigerators become possible. To evaluate such high performance, we develop a measurement technique for luminescence efficiency with sufficient accuracy below one part per thousand. Photothermal threshold quantum yield is based on the quantization of light to minimize overall measurement uncertainty. This technique is used to guide a procedure capable of making ensembles of near-unity emitting cadmium selenide/cadmium sulfide (CdSe/CdS) core-shell quantum dots. We obtain a photothermal threshold quantum yield luminescence efficiency of 99.6 ± 0.2%, indicating nearly complete suppression of nonradiative decay channels.

7.
J Am Chem Soc ; 140(50): 17760-17772, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30501174

ABSTRACT

We introduce a general surface passivation mechanism for cesium lead halide perovskite materials (CsPbX3, X = Cl, Br, I) that is supported by a combined experimental and theoretical study of the nanocrystal surface chemistry. A variety of spectroscopic methods are employed together with ab initio calculations to identify surface halide vacancies as the predominant source of charge trapping. The number of surface traps per nanocrystal is quantified by 1H NMR spectroscopy, and that number is consistent with a simple trapping model in which surface halide vacancies create deleterious under-coordinated lead atoms. These halide vacancies exhibit trapping behavior that differs among CsPbCl3, CsPbBr3, and CsPbI3. Ab initio calculations suggest that introduction of anionic X-type ligands can produce trap-free band gaps by altering the energetics of lead-based defect levels. General rules for selecting effective passivating ligand pairs are introduced by considering established principles of coordination chemistry. Introducing softer, anionic, X-type Lewis bases that target under-coordinated lead atoms results in absolute quantum yields approaching unity and monoexponential luminescence decay kinetics, thereby indicating full trap passivation. This work provides a systematic framework for preparing highly luminescent CsPbX3 nanocrystals with variable compositions and dimensionalities, thereby improving the fundamental understanding of these materials and informing future synthetic and post-synthetic efforts toward trap-free CsPbX3 nanocrystals.

9.
J Am Chem Soc ; 139(19): 6566-6569, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28448140

ABSTRACT

We demonstrate postsynthetic modification of CsPbBr3 nanocrystals by a thiocyanate salt treatment. This treatment improves the quantum yield of both freshly synthesized (PLQY ≈ 90%) and aged nanocrystals (PLQY ≈ 70%) to within measurement error (2-3%) of unity, while simultaneously maintaining the shape, size, and colloidal stability. Additionally, the luminescence decay kinetics transform from multiexponential decays typical of nanocrystalline semiconductors with a distribution of trap sites, to a monoexponential decay, typical of single energy level emitters. Thiocyanate only needs to access a limited number of CsPbBr3 nanocrystal surface sites, likely representing under-coordinated lead atoms on the surface, in order to have this effect.

10.
J Am Chem Soc ; 138(37): 12065-8, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27606934

ABSTRACT

Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

11.
J Am Chem Soc ; 137(51): 16008-11, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26669631

ABSTRACT

Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. The broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskite NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.

12.
J Phys Chem A ; 118(45): 10563-74, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25012856

ABSTRACT

Confined environments can be used to alter the selectivity of a reaction by influencing the organization of the reactants, altering the mobility of trapped molecules, facilitating one reaction pathway or selectively stabilizing the products. This manuscript utilizes a series of potentially photoreactive guests to interrogate the utility of the one-dimensional nanochannels of a porous host to absorb and facilitate the reaction of encapsulated guests. The host is a columnar self-assembled phenylethynylene bis-urea macrocycle, which absorbs guests, including coumarin, 6-methyl coumarin, 7-methyl coumarin, 7-methoxy coumarin, acenaphthylene, cis-stilbene, trans-stilbene, and trans-ß-methylstyrene to afford crystalline inclusion complexes. We examine the structure of the host:guest complexes using powder X-ray diffraction, which suggests that they are well-ordered highly crystalline materials. Investigations using solid-state cross-polarized magic angle spinning (13)C{(1)H}CP-MAS NMR spectroscopy indicate that the guests are mobile relative to the host. Upon UV-irradiation, we observed selective photodimerization reactions for coumarin, 6-methyl coumarin, 7-methyl coumarin, and acenaphthylene, while the other substrates were unreactive even under prolonged UV-irradiation. Grand Canonical Monte Carlo simulations suggest that the reactive guests were close paired and preorganized in configurations that facilitate the photodimerization with high selectivity while the unreactive guests did not exhibit similar close pairing. A greater understanding of the factors that control diffusion and reaction in confinement could lead to the development of better catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...