Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38137484

ABSTRACT

Structural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization (FISH), which have been employed globally for the past three decades, have significant limitations in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither cultured cells nor amplification of DNA, addressing the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) according to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes), 18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total of 215 datasets, Inc.luding replicates, were generated, and analyzed successfully. Sample data were then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at higher resolution. The results of this validation study demonstrate the superiority of OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.

2.
Clin Cancer Res ; 23(16): 4716-4723, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28420725

ABSTRACT

Purpose: Noninvasive drug biomarkers for the early assessment of tumor response can enable adaptive therapeutic decision-making and proof-of-concept studies for investigational drugs. Circulating tumor DNA (ctDNA) is released into the circulation by tumor cell turnover and has been shown to be detectable in urine.Experimental Design: We tested the hypothesis that dynamic changes in EGFR activating (exon 19del and L858R) and resistance (T790M) mutation levels detected in urine could inform tumor response within days of therapy for advanced non-small cell lung cancer (NSCLC) patients receiving osimertinib, a second-line third-generation anti-EGFR tyrosine kinase inhibitor.Results: Eight of nine evaluable NSCLC patients had detectable T790M-mutant DNA fragments in pretreatment baseline samples. Daily monitoring of mutations in urine indicated a pattern of intermittent spikes throughout week 1, suggesting apoptosis with an overall decrease in fragment numbers from baselines to day 7 preceding radiographic response assessed at 6 to 12 weeks.Conclusions: These findings suggest drug-induced tumor apoptosis within days of initial dosing. Daily sampling of ctDNA may enable early assessment of patient response and proof-of-concept studies for drug development. The modeling of tumor lysis through the day-to-day kinetics of ctDNA released into the blood and then into the urine is demonstrated in this proof-of-concept study in lung cancer patients receiving anti-EGFR tyrosine kinase inhibitors. This strategy may determine the specific clonal populations of cells which undergo apoptosis within the first week of therapy. This has important implications for developing combinational strategies to address inter- and intralesional heterogeneity and characterizing residual disease after initial drug exposure. Clin Cancer Res; 23(16); 4716-23. ©2017 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Circulating Tumor DNA/urine , DNA, Neoplasm/urine , Lung Neoplasms/drug therapy , Piperazines/therapeutic use , Acrylamides , Aged , Aniline Compounds , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/urine , Circulating Tumor DNA/genetics , DNA, Neoplasm/genetics , Drug Monitoring , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Exons/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/urine , Middle Aged , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors/therapeutic use , Time Factors , Treatment Outcome
3.
J Thorac Oncol ; 11(10): 1690-700, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27468937

ABSTRACT

INTRODUCTION: In approximately 60% of patients with NSCLC who are receiving EGFR tyrosine kinase inhibitors, resistance develops through the acquisition of EGFR T790M mutation. We aimed to demonstrate that a highly sensitive and quantitative next-generation sequencing analysis of EGFR mutations from urine and plasma specimens is feasible. METHODS: Short footprint mutation enrichment next-generation sequencing assays were used to interrogate EGFR activating mutations and the T790M resistance mutation in urine or plasma specimens from patients enrolled in TIGER-X (NCT01526928), a phase 1/2 clinical study of rociletinib in previously treated patients with EGFR mutant-positive advanced NSCLC. RESULTS: Of 63 patients, 60 had evaluable tissue specimens. When the tissue result was used as a reference, the sensitivity of EGFR mutation detection in urine was 72% (34 of 47 specimens) for T790M, 75% (12 of 16) for L858R, and 67% (28 of 42) for exon 19 deletions. With specimens that met a recommended volume of 90 to 100 mL, the sensitivity was 93% (13 of 14 specimens) for T790M, 80% (four of five) for L858R, and 83% (10 of 12) for exon 19 deletions. A comparable sensitivity of EGFR mutation detection was observed in plasma: 93% (38 of 41 specimens) for T790M, 100% (17 of 17) for L858R, and 87% (34 of 39) for exon 19 deletions. Together, urine and plasma testing identified 12 additional T790M-positive cases that were either undetectable or inadequate by tissue test. In nine patients monitored while receiving treatment with rociletinib, a rapid decrease in urine T790M levels was observed by day 21. CONCLUSIONS: DNA derived from NSCLC tumors can be detected with high sensitivity in urine and plasma, enabling diagnostic detection and monitoring of therapeutic response from these noninvasive "liquid biopsy" samples.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/blood , ErbB Receptors/urine , Lung Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Double-Blind Method , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Retrospective Studies
4.
Oncotarget ; 5(11): 3607-10, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-25003820

ABSTRACT

Erdheim-Chester disease (ECD) is a rare histiocytosis with a high prevalence of BRAF V600E mutation (>50% of patients). Patients with BRAF-mutant ECD can respond to BRAF inhibitors. Unfortunately, the lack of adequate archival tissue often precludes BRAF testing. We hypothesized that cell-free DNA (cfDNA) from plasma or urine can offer an alternative source of biologic material for testing. We tested for BRAF V600E mutation in cfDNA from the plasma and urine of 6 ECD patients. In patients with available archival tissue, the result of BRAF mutation analysis was concordant with plasma and urine cfDNA results in all 3 patients (100% agreement, kappa 1.00). In all 6 patients, BRAF mutation analysis of plasma and urine cfDNA was concordant in 5 of 6 patients (83% agreement, kappa 0.67). Testing for BRAF V600E mutation in plasma and urine cfDNA should be further investigated as an alternative to archival tissue mutation analysis.


Subject(s)
DNA/blood , Erdheim-Chester Disease/enzymology , Erdheim-Chester Disease/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Adult , Aged , DNA/genetics , DNA Mutational Analysis , Erdheim-Chester Disease/blood , Erdheim-Chester Disease/urine , Female , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Proto-Oncogene Proteins B-raf/blood , Proto-Oncogene Proteins B-raf/urine
5.
Int J Cancer ; 124(10): 2294-302, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19173291

ABSTRACT

Indole-3-carbinol (I3C), a phytochemical derived from cruciferous vegetables such as broccoli and Brussels sprouts, has potent antiproliferative effects in human breast cancer cells and has been shown to decrease metastatic spread of tumors in experimental animals. Using chemotaxis and fluorescent-bead cell motility assays, we demonstrated that I3C significantly decreased the in vitro migration of MDA-MB-231 cells, a highly invasive breast cancer cell line. Immunofluorescence staining of the actin cytoskeleton revealed that concurrent with the loss of cell motility, I3C treatment significantly increased stress fiber formation. Furthermore, I3C induced the localization of the focal adhesion component vinculin and tyrosine-phosphorylated proteins to the cell periphery, which implicates an indole-dependent enhancement of focal adhesions within the outer boundary of the cells. Coimmunoprecipitation analysis of focal adhesion kinase demonstrated that I3C stimulated the dynamic formation of the focal adhesion protein complex without altering the total level of individual focal adhesion proteins. The RhoA-Rho kinase pathway is involved in stress fiber and focal adhesion formation, and I3C treatment stimulated Rho kinase enzymatic activity and cofilin phosphorylation, which is a downstream target of Rho kinase signaling, but did not increase the level of active GTP-bound RhoA. Exposure of MDA-MB-231 cells to the Rho kinase inhibitor Y-27632, or expression of dominant negative RhoA ablated the I3C induced formation of stress fibers and of peripheral focal adhesions. Expression of constitutively active RhoA mimicked the I3C effects on both processes. Taken together, our data demonstrate that I3C induces stress fibers and peripheral focal adhesions in a Rho kinase-dependent manner that leads to an inhibition of motility in human breast cancer cells.


Subject(s)
Cell Adhesion/drug effects , Cell Movement/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Indoles/pharmacology , rhoA GTP-Binding Protein/metabolism , Cell Line, Tumor , Enzyme Activation , Fluorescent Antibody Technique , Humans
6.
Mol Immunol ; 45(2): 510-22, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17658605

ABSTRACT

Src kinase-associated phosphoprotein of 55 kDa (SKAP55) is an adapter protein with an N-terminal region, a pleckstrin homology domain, a linker with tyrosine phosphorylation sites, and a C-terminal Src homology 3 domain. We report that overexpression of SKAP55 disrupts signaling from the TCR to the Ras-Erk-AP-1 pathway and transcription of the IL-2 gene in primary human T cells and in Jurkat T leukemia cells. In contrast, moderate overexpression of SKAP55 increased TCR-dependent AP-1 transcriptional activity, suggesting that high-level SKAP55 overexpression interfered with the assembly of functional signaling complexes required for TCR coupling to the Ras pathway. In support of this view, knock-down of SKAP55 by RNA interference resulted in decreased reporter gene activation and decreased ERK phosphorylation. In contrast, TCR-induced NF-kappaB activation was not affected. Since constitutively active forms of Ras or Raf-1 overcame the inhibitory effects of SKAP55 overexpression, we searched for a mechanism upstream of Ras and found that SKAP55 co-immunoprecipitated with the Ras activator RasGRP1. The binding of RasGRP1 to SKAP55 required the C-terminus of SKAP55 and was enhanced by tyrosine phosphorylation of SKAP55. These results suggest that SKAP55 modulates signal transduction from the TCR to Ras by binding to RasGRP1.


Subject(s)
DNA-Binding Proteins/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Transcription Factor AP-1/metabolism , ras Proteins/metabolism , Cell Line , DNA-Binding Proteins/chemistry , Enzyme Activation , Gene Silencing , Genes, Reporter , Guanine Nucleotide Exchange Factors/chemistry , Humans , Phosphoproteins/chemistry , Phosphoproteins/deficiency , Protein Binding , Protein Interaction Mapping , Protein Structure, Tertiary , Signal Transduction , T-Lymphocytes/enzymology
7.
Mol Biol Cell ; 17(6): 2789-98, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16571681

ABSTRACT

Microtubule plus-end tracking proteins (+TIPs) are a diverse group of molecules that regulate microtubule dynamics and interactions of microtubules with other cellular structures. Many +TIPs have affinity for each other but the functional significance of these associations is unclear. Here we investigate the physical and functional interactions among three +TIPs in S. cerevisiae, Stu2, Bik1, and Bim1. Two-hybrid, coimmunoprecipitation, and in vitro binding assays demonstrate that they associate in all pairwise combinations, although the interaction between Stu2 and Bim1 may be indirect. Three-hybrid assays indicate that these proteins compete for binding to each other. Thus, Stu2, Bik1, and Bim1 interact physically but do not appear to be arranged in a single unique complex. We examined the functional interactions among pairs of proteins by comparing cytoplasmic and spindle microtubule dynamics in cells lacking either one or both proteins. On cytoplasmic microtubules, Stu2 and Bim1 act cooperatively to regulate dynamics in G1 but not in preanaphase, whereas Bik1 acts independently from Stu2 and Bim1. On kinetochore microtubules, Bik1 and Bim1 are redundant for regulating dynamics, whereas Stu2 acts independently from Bik1 and Bim1. These results indicate that interactions among +TIPS can play important roles in the regulation of microtubule dynamics.


Subject(s)
Microtubules/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/physiology , Genotype , Microscopy, Fluorescence , Microtubule Proteins/genetics , Microtubule Proteins/physiology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/physiology , Microtubules/ultrastructure , Polymerase Chain Reaction , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...