Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894131

ABSTRACT

In the paper, a new method of phase measurement error suppression in a phase-sensitive optical time domain reflectometer is proposed and experimentally proved. The main causes of phase measurement errors are identified and considered, such as the influence of the recording interferometer instabilities and laser wavelength instability, which can cause inaccuracies in phase unwrapping. The use of a Mach-Zender interferometer made by 3 × 3 fiber couplers is proposed and tested to provide insensitivity to the recording interferometer and laser source instabilities. It is shown that using all three available photodetectors of the interferometer, instead of just one pair, achieves significantly better accuracy in the phase unwrapping. A novel compensation scheme for accurate phase measurements in a phase-sensitive optical time domain reflectometer is proposed, and a comparison of the measurement signals with or without such compensation is shown and discussed. The proposed method, using three photodetectors, allows for very good compensation of the phase measurement errors arising from common-mode noise from the interferometer and laser source, providing a significant improvement in signal detection. In addition, the method allows the tracking of slow temperature changes in the monitored fiber/object, which is not obtainable when using a simple low-pass filter for phase unwrapping error reduction, as is customary in several systems of this kind.

2.
Sensors (Basel) ; 24(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38610492

ABSTRACT

In recent years, attention to the realization of a distributed fiber-optic microphone for the detection and recognition of the human voice has increased, whereby the most popular schemes are based on φ-OTDR. Many issues related to the selection of optimal system parameters and the recognition of registered signals, however, are still unresolved. In this research, we conducted theoretical studies of these issues based on the φ-OTDR mathematical model and verified them with experiments. We designed an algorithm for fiber sensor signal processing, applied a testing kit, and designed a method for the quantitative evaluation of our obtained results. We also proposed a new setup model for lab tests of φ-OTDR single coordinate sensors, which allows for the quick variation of their parameters. As a result, it was possible to define requirements for the best quality of speech recognition; estimation using the percentage of recognized words yielded a value of 96.3%, and estimation with Levenshtein distance provided a value of 15.

3.
Nature ; 626(8000): 722-723, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38383629
4.
Sensors (Basel) ; 23(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37514697

ABSTRACT

The purpose of this work is to increase the security of the perimeter of an area from unauthorized intrusions by creating an improved algorithm for classifying acoustic impacts recorded with a sensor system based on a phase-sensitive optical time reflectometer (phi-OTDR). The algorithm includes machine learning, so a dataset consisting of two classes was assembled. The dataset consists of two classes. The first class is the data of the steps, and the second class is other non-stepping influences (engine noise, a passing car, a passing cyclist, etc.). As an intrusion signal, a human walking signal is analyzed and recorded in frames of 5 s, which passed the threshold condition. Since, in most cases, the intruder moves on foot to overcome the perimeter, the analysis of the acoustic effects generated during the step will increase the efficiency of the perimeter detection tools. When walking quietly, step signals can be quite weak, and background signals can contain high energy and visually resemble the signals you are looking for. Therefore, an algorithm was created that processes space-time diagrams developed in real time, which are grayscale images. At the same time, during the processing of one image, two more images are calculated, which are the result of processing the denoised autoencoder and the created mathematical model of the adaptive correlation. Then, the three obtained images are fed to the input of the created three-channel neural network classifier, which includes convolutional layers for the automatic extraction of spatial features. The probability of correctly detecting steps is 98.3% and that of background actions is 97.93%.

5.
Sensors (Basel) ; 23(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37430897

ABSTRACT

The paper presents the application of a phase-sensitive optical time-domain reflectometer (phi-OTDR) in the field of urban infrastructure monitoring. In particular, the branched structure of the urban network of telecommunication wells. The encountered tasks and difficulties are described. The possibilities of usage are substantiated, and the numerical values of the event quality classification algorithms applied to experimental data are calculated using machine learning methods. Among the considered methods, the best results were shown by convolutional neural networks, with a probability of correct classification as high as 98.55%.

6.
Phys Rev Lett ; 130(24): 243802, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37390434

ABSTRACT

Optically induced mechanical torque driving rotation of small objects requires the presence of absorption or breaking cylindrical symmetry of a scatterer. A spherical nonabsorbing particle cannot rotate due to the conservation of the angular momentum of light upon scattering. Here, we suggest a novel physical mechanism for the angular momentum transfer to nonabsorbing particles via nonlinear light scattering. The breaking of symmetry occurs at the microscopic level manifested in nonlinear negative optical torque due to the excitation of resonant states at the harmonic frequency with higher projection of angular momentum. The proposed physical mechanism can be verified with resonant dielectric nanostructures, and we suggest some specific realizations.


Subject(s)
Nanostructures , Torque , Motion
7.
Nanomaterials (Basel) ; 13(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37299713

ABSTRACT

The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in the case of silicon metasurfaces. Here, we experimentally demonstrate the permanent tailoring of quasi-bound states in the continuum (quasi-BIC) resonance wavelength in an a-Si:H metasurface and quantitatively analyze the modification in the Q-factor with gradual heating. A gradual increment in temperature leads to a spectral shift in the resonance wavelength. With the support of ellipsometry measurements, the spectral shift resulting from the short-duration (ten minutes) heating is identified to be due to refractive index variations in the material rather than a geometric effect or amorphous/polycrystalline phase transition. In the case of quasi-BIC modes in the near-infrared, resonance wavelength could be adjusted from T = 350 °C to T = 550 °C without affecting the Q-factor considerably. Apart from the temperature-induced resonance trimming, large Q-factors can be attained at the highest analyzed temperature (T = 700 °C) in the near-infrared quasi-BIC modes. Resonance tailoring is just one of the possible applications of our results. We expect that our study is also insightful in the design of a-Si:H metasurfaces where large Q-factors are required at high temperatures.

8.
Sensors (Basel) ; 23(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679381

ABSTRACT

This article is devoted to the development of a classification method based on an artificial neural network architecture to solve the problem of recognizing the sources of acoustic influences recorded by a phase-sensitive OTDR. At the initial stage of signal processing, we propose the use of a band-pass filter to collect data sets with an increased signal-to-noise ratio. When solving the classification problem, we study three widely used convolutional neural network architectures: AlexNet, ResNet50, and DenseNet169. As a result of computational experiments, it is shown that the AlexNet and DenseNet169 architectures can obtain accuracies above 90%. In addition, we propose a novel CNN architecture based on AlexNet, which obtains the best results; in particular, its accuracy is above 98%. The advantages of the proposed model include low power consumption (400 mW) and high speed (0.032 s per net evaluation). In further studies, in order to increase the accuracy, reliability, and data invariance, the use of new algorithms for the filtering and extraction of acoustic signals recorded by a phase-sensitive reflectometer will be considered.


Subject(s)
Algorithms , Neural Networks, Computer , Reproducibility of Results , Signal-To-Noise Ratio , Acoustics
9.
Light Sci Appl ; 12(1): 3, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36587036

ABSTRACT

Manipulating light on the nanoscale has become a central challenge in metadevices, resonant surfaces, nanoscale optical sensors, and many more, and it is largely based on resonant light confinement in dispersive and lossy metals and dielectrics. Here, we experimentally implement a novel strategy for dielectric nanophotonics: Resonant subwavelength localized confinement of light in air. We demonstrate that voids created in high-index dielectric host materials support localized resonant modes with exceptional optical properties. Due to the confinement in air, the modes do not suffer from the loss and dispersion of the dielectric host medium. We experimentally realize these resonant Mie voids by focused ion beam milling into bulk silicon wafers and experimentally demonstrate resonant light confinement down to the UV spectral range at 265 nm (4.68 eV). Furthermore, we utilize the bright, intense, and naturalistic colours for nanoscale colour printing. Mie voids will thus push the operation of functional high-index metasurfaces into the blue and UV spectral range. The combination of resonant dielectric Mie voids with dielectric nanoparticles will more than double the parameter space for the future design of metasurfaces and other micro- and nanoscale optical elements. In particular, this extension will enable novel antenna and structure designs which benefit from the full access to the modal field inside the void as well as the nearly free choice of the high-index material for novel sensing and active manipulation strategies.

10.
Sensors (Basel) ; 22(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35408386

ABSTRACT

We demonstrated a fiber optic distributed acoustic sensor based on a double Sagnac interferometer, using two wavelengths separated by CWDM modules. A mathematical model of signal formation principle, based on a shift in two signals analysis, was described and substantiated mathematically. The dependence of the sensor sensitivity on a disturbance coordinate and frequency was found and simulated, and helped determine a low sensitivity zone length and provided sensor scheme optimization. A data processing algorithm without filtering, appropriate even in case of a high system noise level, was described. An experimental study of the distributed fiber optic sensor based on a Sagnac interferometer with two wavelengths divided countering loops was carried out. An accuracy of 24 m was achieved for 25.4 km SMF sensing fiber without phase unwrapping.

11.
Sensors (Basel) ; 21(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34883841

ABSTRACT

In this study, an experimental study of the burning rate of solid fuel in a model solid propellant rocket motor (SRM) E-5-0 was conducted using a non-invasive control method with fiber-optic sensors (FOSs). Three sensors based on the Mach-Zehnder interferometer (MZI), fixed on the SRM E-5-0, recorded the vibration signal during the entire cycle of solid fuel burning. The results showed that, when using MZI sensors, the non-invasive control of solid fuel burnout is made possible both by recording the time of arrival of the combustion front to the sensor and by analyzing the peaks on the spectrogram of the recorded FOS signal. The main mode of acoustic vibrations of the chamber of the model SRM is longitudinal, and it changes with time, depending on the chamber length. Longitudinal modes of the combustion chamber were detected by MZI only after the combustion front passed its fixing point, and the microphone was unable to register them at all. The results showed that the combustion rate was practically constant after the first second, which was confirmed by the graph of the pressure versus time at the nozzle exit.

12.
Sensors (Basel) ; 21(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770385

ABSTRACT

We present a theoretical and experimental study in which we increased the sensitivity of a phase-sensitive optical time-domain reflectometer (phi-OTDR). This was achieved by constructing coils in the sensor cable, which increased the total amplitude of the impact on the fiber. We demonstrate this theoretically using the example of a phase-sensitive reflectometer model and practically in testing grounds with a buried nearby conventional sensor and a sensor with coils. The sensitivity increased 2.2 times. We detected 95% of events when using coils, versus 20% when using a straight cable. The suggested method does not require any modifications to the device.


Subject(s)
Fiber Optic Technology
13.
Nano Lett ; 21(20): 8848-8855, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34633185

ABSTRACT

High-index dielectric metasurfaces can support sharp optical resonances enabled by the physics of bound states in the continuum (BICs) often manifested in experiments as quasi-BIC resonances. They provide a way to enhance light-matter interaction at the subwavelength scale bringing novel opportunities for nonlinear nanophotonics. Strong narrow-band field enhancement in quasi-BIC metasurfaces leads to an extreme sensitivity to a change of the refractive index that may limit nonlinear functionalities for the pump intensities beyond the perturbative regime. Here we study ultrafast self-action effects observed in quasi-BIC silicon metasurfaces and demonstrate how they alter the power dependence of the third-harmonic generation efficiency. We study experimentally a transition from the subcubic to supercubic regimes for the generated third-harmonic power driven by a blue-shift of the quasi-BIC in the multiphoton absorption regime. Our results suggest a way to implement ultrafast nonlinear dynamics in high-index resonant dielectric metasurfaces for nonlinear meta-optics beyond the perturbative regime.

14.
Nat Commun ; 12(1): 4135, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34226557

ABSTRACT

Wavelength-scale lasers provide promising applications through low power consumption requiring for optical cavities with increased quality factors. Cavity radiative losses can be suppressed strongly in the regime of optical bound states in the continuum; however, a finite size of the resonator limits the performance of bound states in the continuum as cavity modes for active nanophotonic devices. Here, we employ the concept of a supercavity mode created by merging symmetry-protected and accidental bound states in the continuum in the momentum space, and realize an efficient laser based on a finite-size cavity with a small footprint. We trace the evolution of lasing properties before and after the merging point by varying the lattice spacing, and we reveal this laser demonstrates the significantly reduced threshold, substantially increased quality factor, and shrunken far-field images. Our results provide a route for nanolasers with reduced out-of-plane losses in finite-size active nanodevices and improved lasing characteristics.

15.
Nat Commun ; 12(1): 3246, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059690

ABSTRACT

Biosensors are indispensable tools for public, global, and personalized healthcare as they provide tests that can be used from early disease detection and treatment monitoring to preventing pandemics. We introduce single-wavelength imaging biosensors capable of reconstructing spectral shift information induced by biomarkers dynamically using an advanced data processing technique based on an optimal linear estimator. Our method achieves superior sensitivity without wavelength scanning or spectroscopy instruments. We engineered diatomic dielectric metasurfaces supporting bound states in the continuum that allows high-quality resonances with accessible near-fields by in-plane symmetry breaking. The large-area metasurface chips are configured as microarrays and integrated with microfluidics on an imaging platform for real-time detection of breast cancer extracellular vesicles encompassing exosomes. The optofluidic system has high sensing performance with nearly 70 1/RIU figure-of-merit enabling detection of on average 0.41 nanoparticle/µm2 and real-time measurements of extracellular vesicles binding from down to 204 femtomolar solutions. Our biosensors provide the robustness of spectrometric approaches while substituting complex instrumentation with a single-wavelength light source and a complementary-metal-oxide-semiconductor camera, paving the way toward miniaturized devices for point-of-care diagnostics.


Subject(s)
Biosensing Techniques , Breast Neoplasms/diagnosis , Microfluidic Analytical Techniques/instrumentation , Point-of-Care Testing , Refractometry/instrumentation , Breast Neoplasms/blood , Exosomes/chemistry , Female , Humans , Microfluidic Analytical Techniques/methods , Nanoparticles/chemistry , Refractometry/methods , Spectrum Analysis/instrumentation , Spectrum Analysis/methods
16.
Nano Lett ; 21(4): 1765-1771, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33539099

ABSTRACT

Sharp optical resonances in high-index dielectric nanostructures have recently attracted significant attention for their promising applications in nanophotonics. Fano resonances, as well as resonances associated with bound states in the continuum (BIC), have independently shown a great potential for applications in nanoscale lasers, sensors, and nonlinear optical devices. Here, we demonstrate experimentally a close connection between Fano and quasi-BIC resonances excited in individual dielectric nanoantennas. We analyze systematically the resonant response of AlGaAs nanoantennas pumped with a structured light in the near-infrared range. We trace a variation of the scattering spectrum that fully agrees with an analytical expression governed by a Fano parameter and observe directly a transition to a quasi-BIC resonance. Our results suggest a unified approach toward the analysis of sharp resonances in subwavelength nanostructures originating from strong coupling of optical modes that can provide high energy localization for enhanced light-matter interactions.

17.
Nano Lett ; 21(2): 1090-1095, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33439662

ABSTRACT

Metamaterial-based perfect absorbers provide efficient ways for selective absorption of light with both linear or circular polarizations. Perfect absorption for an arbitrary polarization requires the development of subwavelength structures absorbing efficiently elliptically polarized light, but they remain largely unexplored. Here, we design and realize experimentally novel plasmonic metasurfaces for full-Stokes polarization perfect absorption in the mid-infrared. The metasurface unit cell consists of coupled anisotropic meta-atoms forming a diatomic metamolecule. The designed plasmonic metastructures provide a strong field enhancement by at least 1 order of magnitude higher than conventional perfect absorbers. In experiment, our plasmonic metasurfaces demonstrate sharp differentiation of spectral responses for an arbitrary pair of orthogonal polarization states (linear, circular, or elliptical) providing perfect absorption for one polarization with strong reflection for its counterpart. Our results suggest a novel route for efficient control of light polarization in metasurfaces offering numerous potential applications ranging from thermal imaging to chiral molecule detection.

18.
Adv Mater ; 33(1): e2003804, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33169472

ABSTRACT

Electromagnetic response of dielectric resonators with high refractive index is governed by optically induced electric and magnetic Mie resonances facilitating confinement of light with the amplitude enhancement. Traditionally, strong subwavelength trapping of light was associated only with plasmonic or epsilon-near-zero structures, which however suffer from material losses. Recently, an alternative localization mechanism was proposed allowing the trapping of light in individual subwavelength optical resonators with a high quality factor in the regime of a supercavity mode. Here, the experimental observation of the supercavity modes in subwavelength ceramic resonators in the radio-frequency range is presented. It is experimentally demonstrated that the regime of supercavity modes can be achieved via precise tuning of the resonator's dimensions. A huge growth of the unloaded quality factor is achieved with experimental values up to 1.25 × 104 , limited only by material losses of ceramics. It is revealed that the supercavity modes can be excited efficiently both in the near- and far-field. In both cases, the supercavity mode manifests itself explicitly as a Fano resonance with characteristic peculiarities of spectral shape and radiation pattern. A comparison of supercavities made of diversified materials for the visible, infrared, THz, and radio-frequency regimes is provided.

19.
Sensors (Basel) ; 20(22)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187136

ABSTRACT

Weak fiber Bragg gratings (WFBGs) in a phase-sensitive optical time-domain reflectometer (phi-OTDR) sensor offer opportunities to significantly improve the signal-to-noise ratio (SNR) and sensitivity of the device. Here, we demonstrate the process of the signal and noise components' formation in the device reflectograms for a Rayleigh scattering phi-OTDR and a WFBG-based OTDR. We theoretically calculated the increase in SNR when using the same optical and electrical components under the same external impacts for both setups. The obtained values are confirmed on experimental installations, demonstrating an improvement in the SNR by about 19 dB at frequencies of 20, 100, and 400 Hz. In this way, the minimum recorded impact (at the threshold SNR = 10) can be reduced from 100 nm per 20 m of fiber to less than 5 nm per 20 m of fiber sensor.

20.
ACS Nano ; 14(7): 8149-8156, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32484650

ABSTRACT

Subwavelength particles supporting Mie resonances underpin a strategy in nanophotonics for efficient control and manipulation of light by employing both an electric and a magnetic optically induced multipolar resonant response. Here, we demonstrate that monolithic dielectric nanoparticles made of CsPbBr3 halide perovskites can exhibit both efficient Mie-resonant lasing and structural coloring in the visible and near-IR frequency ranges. We employ a simple chemical synthesis with nearly epitaxial quality for fabricating subwavelength cubes with high optical gain and demonstrate single-mode lasing governed by the Mie resonances from nanocubes as small as 310 nm by the side length. These active nanoantennas represent the most compact room-temperature nonplasmonic nanolasers demonstrated until now.

SELECTION OF CITATIONS
SEARCH DETAIL
...