Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biotechnol ; 387: 1-11, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38555020

ABSTRACT

The yeast Saccharomyces cerevisiae is a versatile cell factory used for manufacturing of a wide range of products, among them recombinant proteins. Protein folding is one of the rate-limiting processes and this shortcoming is often overcome by the expression of folding catalysts and chaperones in the endoplasmic reticulum (ER). In this work, we aimed to establish the impact of ER structure on cellular productivity. The reticulon proteins Rtn1p and Rtn2p, and Yop1p are membrane curvature inducing proteins that define the morphology of the ER and depletion of these proteins creates yeast cells with a higher ER sheet-to-tubule ratio. We created yeast strains with different combinations of deletions of Rtn1p, Rtn2p, and Yop1p coding genes in cells with a normal or expanded ER lumen. We identified strains that reached up to 2.2-fold higher antibody titres compared to the control strain. The expanded ER membrane reached by deletion of the lipid biosynthesis repressor OPI1 was essential for the increased productivity. The improved specific productivity was accompanied by an up to 2-fold enlarged ER surface area and a 1.5-fold increased cross-sectional cell area. Furthermore, the strains with enlarged ER displayed an attenuated unfolded protein response. These results underline the impact that ER structures have on productivity and support the notion that reprogramming subcellular structures belongs into the toolbox of synthetic biology.


Subject(s)
Endoplasmic Reticulum , Recombinant Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Unfolded Protein Response/genetics , Antibodies/metabolism , Antibodies/genetics
2.
Article in English | MEDLINE | ID: mdl-32296695

ABSTRACT

Saccharomyces cerevisiae is a common platform for production of therapeutic proteins, but it is not intrinsically suited for the manufacturing of antibodies. Antibodies are naturally produced by plasma cells (PCs) and studies conducted on PC differentiation provide a comprehensive blueprint for the cellular transformations needed to create an antibody factory. In this study we mined transcriptomics data from PC differentiation to improve antibody secretion by S. cerevisiae. Through data exploration, we identified several new target genes. We tested the effects of 14 genetic modifications belonging to different cellular processes on protein production. Four of the tested genes resulted in improved antibody expression. The ER stress sensor IRE1 increased the final titer by 1.8-fold and smaller effects were observed with PSA1, GOT1, and HUT1 increasing antibody titers by 1. 6-, 1. 4-, and 1.4-fold. When testing combinations of these genes, the highest increases were observed when co-expressing IRE1 with PSA1, or IRE1 with PSA1 and HUT1, resulting in 3.8- and 3.1-fold higher antibody titers. In contrast, strains expressing IRE1 alone or in combination with the other genes produced similar or lower levels of recombinantly expressed endogenous yeast acid phosphatase compared to the controls. Using a genetic UPR responsive GFP reporter construct, we show that IRE1 acts through constitutive activation of the unfolded protein response. Moreover, the positive effect of IRE1 expression was transferable to other antibody molecules. We demonstrate how data exploration from an evolutionary distant, but highly specialized cell type can pinpoint new genetic targets and provide a novel concept for rationalized cell engineering.

3.
Yeast ; 35(4): 331-341, 2018 04.
Article in English | MEDLINE | ID: mdl-29159981

ABSTRACT

The cellular changes induced by heterologous protein expression in the yeast Saccharomyces cerevisiae have been analysed on many levels and found to be significant. However, even though high-level protein production poses a metabolic burden, evaluation of the expression host at the level of the metabolome has often been neglected. We present a comparison of metabolite profiles of a wild-type strain with those of three strains producing recombinant antibody variants of increasing size and complexity: an scFv fragment, an scFv-Fc fusion protein and a full-length IgG molecule. Under producing conditions, all three recombinant strains showed a clear decrease in growth rate compared with the wild-type strain and the severity of the growth phenotype increased with size of the protein. The levels of 76 intracellular metabolites were determined using a targeted (semi) quantitative mass spectrometry based approach. Based on unsupervised and supervised multivariate analysis of metabolite profiles, together with pathway activity profiling, the recombinant strains were found to be significantly different from each other and from the wild-type strain. We observed the most prominent changes in metabolite levels for metabolites involved in amino acid and redox metabolism. Induction of the unfolded protein response was detected in all producing strains and is considered to be a contributing factor to the overall metabolic burden on the cells.


Subject(s)
Antibodies/metabolism , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Bioreactors , Energy Metabolism/physiology , Metabolic Networks and Pathways , Metabolome , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/immunology
4.
Proc Natl Acad Sci U S A ; 114(43): E8977-E8986, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29073094

ABSTRACT

The actin cytoskeleton powers membrane deformation during many cellular processes, such as migration, morphogenesis, and endocytosis. Membrane phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], regulate the activities of many actin-binding proteins (ABPs), including profilin, cofilin, Dia2, N-WASP, ezrin, and moesin, but the underlying molecular mechanisms have remained elusive. Moreover, because of a lack of available methodology, the dynamics of membrane interactions have not been experimentally determined for any ABP. Here, we applied a combination of biochemical assays, photobleaching/activation approaches, and atomistic molecular dynamics simulations to uncover the molecular principles by which ABPs interact with phosphoinositide-rich membranes. We show that, despite using different domains for lipid binding, these proteins associate with membranes through similar multivalent electrostatic interactions, without specific binding pockets or penetration into the lipid bilayer. Strikingly, our experiments reveal that these proteins display enormous differences in the dynamics of membrane interactions and in the ranges of phosphoinositide densities that they sense. Profilin and cofilin display transient, low-affinity interactions with phosphoinositide-rich membranes, whereas F-actin assembly factors Dia2 and N-WASP reside on phosphoinositide-rich membranes for longer periods to perform their functions. Ezrin and moesin, which link the actin cytoskeleton to the plasma membrane, bind membranes with very high affinity and slow dissociation dynamics. Unlike profilin, cofilin, Dia2, and N-WASP, they do not require high "stimulus-responsive" phosphoinositide density for membrane binding. Moreover, ezrin can limit the lateral diffusion of PI(4,5)P2 along the lipid bilayer. Together, these findings demonstrate that membrane-interaction mechanisms of ABPs evolved to precisely fulfill their specific functions in cytoskeletal dynamics.


Subject(s)
Actins/metabolism , Cytoskeleton/physiology , Phosphatidylinositols/metabolism , Actins/chemistry , Animals , Biomechanical Phenomena , Cell Line, Tumor , Cell Membrane/physiology , Cloning, Molecular , Melanoma/metabolism , Mice , Microfilament Proteins/metabolism , Static Electricity
5.
Biotechnol J ; 12(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28429845

ABSTRACT

Therapeutic protein production in yeast is a reality in industry with an untapped potential to expand to more complex proteins, such as full-length antibodies. Despite numerous engineering approaches, cellular limitations are preventing the use of Saccharomyces cerevisiae as the titers of recombinant antibodies are currently not competitive. Instead of a host specific approach, the possibility of adopting the features from native producers of antibodies, plasma cells, to improve antibody production in yeast. A subset of mammalian folding factors upregulated in plasma cells for expression in yeast and screened for beneficial effects on antibody secretion using a high-throughput ELISA platform was selected. Co-expression of the mammalian chaperone BiP, the co-chaperone GRP170, or the peptidyl-prolyl isomerase FKBP2, with the antibody improved specific product yields up to two-fold. By comparing strains expressing FKBP2 or the yeast PPIase Cpr5p, the authors demonstrate that speeding up peptidyl-prolyl isomerization by upregulation of catalyzing enzymes is a key factor to improve antibody titers in yeast. The findings show that following the route of plasma cells can improve product titers and contribute to developing an alternative yeast-based antibody factory.


Subject(s)
Antibodies/genetics , Antibody Formation/genetics , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/genetics , Antibodies/immunology , Antibody Formation/immunology , Endoplasmic Reticulum Chaperone BiP , Glycoproteins/biosynthesis , Glycoproteins/genetics , HSP70 Heat-Shock Proteins/biosynthesis , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Peptidylprolyl Isomerase/biosynthesis , Peptidylprolyl Isomerase/genetics , Plasma Cells/immunology , Plasma Cells/metabolism , Protein Folding , Recombinant Proteins/genetics , Saccharomyces cerevisiae/chemistry
6.
Microb Cell Fact ; 15: 87, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27216259

ABSTRACT

BACKGROUND: The yeast Saccharomyces cerevisiae provides intriguing possibilities for synthetic biology and bioprocess applications, but its use is still constrained by cellular characteristics that limit the product yields. Considering the production of advanced biopharmaceuticals, a major hindrance lies in the yeast endoplasmic reticulum (ER), as it is not equipped for efficient and large scale folding of complex proteins, such as human antibodies. RESULTS: Following the example of professional secretory cells, we show that inducing an ER expansion in yeast by deleting the lipid-regulator gene OPI1 can improve the secretion capacity of full-length antibodies up to fourfold. Based on wild-type and ER-enlarged yeast strains, we conducted a screening of a folding factor overexpression library to identify proteins and their expression levels that enhance the secretion of antibodies. Out of six genes tested, addition of the peptidyl-prolyl isomerase CPR5 provided the most beneficial effect on specific product yield while PDI1, ERO1, KAR2, LHS1 and SIL1 had a mild or even negative effect to antibody secretion efficiency. Combining genes for ER enhancement did not induce any significant additional effect compared to addition of just one element. By combining the Δopi1 strain, with the enlarged ER, with CPR5 overexpression, we were able to boost the specific antibody product yield by a factor of 10 relative to the non-engineered strain. CONCLUSIONS: Engineering protein folding in vivo is a major task for biopharmaceuticals production in yeast and needs to be optimized at several levels. By rational strain design and high-throughput screening applications we were able to increase the specific secreted antibody yields of S. cerevisiae up to 10-fold, providing a promising strain for further process optimization and platform development for antibody production.


Subject(s)
Antibodies/metabolism , Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae/metabolism , Antibodies/chemistry , Antibodies/genetics , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , Protein Folding , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Temperature
7.
Mol Biotechnol ; 57(3): 233-40, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25370826

ABSTRACT

We describe a new type of molecular cloning that complements the available strategies for homologous recombinatorial cloning. Purified, linear double-stranded DNA molecules with homologous ends are simply mixed in water and they transform readily into E. coli. Insert and linear vector need as few as ten base pairs of homologous sequence at their ends and essentially no incubation or enzyme treatments are needed for creating recombinants from linear fragments. Our method outcompetes most existing cloning methods in simplicity and affordability and is well-suited for high-throughput applications.


Subject(s)
Cloning, Molecular/methods , DNA/metabolism , Homologous Recombination , Escherichia coli/genetics , Exodeoxyribonucleases/metabolism , Polymerase Chain Reaction , Transformation, Bacterial
8.
N Biotechnol ; 31(6): 532-7, 2014 Dec 25.
Article in English | MEDLINE | ID: mdl-24632452

ABSTRACT

N-linked glycosylation of proteins is one of the most common posttranslational modifications. N-glycan structures and N-glycosylation efficiency are crucial parameters in the production of N-glycosylated proteins. Yeast cells can be seen as an attractive production host for therapeutic glycoproteins and pioneering work of glycoengineering was performed in Pichia pastoris, realizing yeast strains capable of producing defined, human-type N-glycans. Most strategies used for glycoengineering rely on the modification of the lipid-linked oligosaccharide biosynthesis for the generation of the substrate for Golgi-localized glycosyltransferases. However, modifications in the lipid-linked oligosaccharide biosynthesis often result in the accumulation of intermediate structures and cause hypoglycosylation of client proteins. In order to ensure complete N-glycosylation, the flow of lipid-linked oligosaccharide through the biosynthetic pathway and the transfer of the oligosaccharide from the donor lipid onto the protein have to be optimized. A promising tool to improve site occupancy is the expression of protozoan oligosaccharyltransferases, which possess altered specificities for the oligosaccharide and also for the protein acceptor site. Furthermore, flipping of the lipid-linked oligosaccharide into the ER lumen can be improved by overexpression of an artificial flippase. Improving the glycosylation efficiency ensures that not only homogeneous N-glycan structures are generated, but also client proteins are fully glycosylated.


Subject(s)
Carbohydrate Metabolism , Pichia/metabolism , Glycosylation
9.
Cell Rep ; 4(6): 1213-23, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24055060

ABSTRACT

Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes.


Subject(s)
Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Cell Membrane/metabolism , Models, Molecular , Protein Conformation , Protein Structure, Tertiary
10.
Nat Struct Mol Biol ; 18(8): 902-7, 2011 Jul 10.
Article in English | MEDLINE | ID: mdl-21743456

ABSTRACT

Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.


Subject(s)
Cell Membrane/metabolism , Epithelium/metabolism , Membrane Proteins/physiology , Amino Acid Motifs , Animals , Binding Sites , Cell Membrane/ultrastructure , Crystallography, X-Ray , Cytoplasmic Vesicles/metabolism , Intercellular Junctions/metabolism , Intestinal Mucosa/metabolism , Intestines/cytology , Kidney/cytology , Kidney/metabolism , Membrane Proteins/analysis , Membrane Proteins/chemistry , Mice , Models, Molecular , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Unilamellar Liposomes/metabolism , rab GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...