Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 490: 1002-11, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24914529

ABSTRACT

Aquatic ecological risk assessment of fungicides in Europe under Regulation 1107/2009/EC does not currently assess risk to non-target bacteria and fungi. Rather, regulatory acceptable concentrations based on ecotoxicological data obtained from studies with fish, invertebrates and primary producers (including algae) are assumed to be protective to all other aquatic organisms. Here we explore the validity of this assumption by investigating the effects of a fungicide (tebuconazole) applied at its "non-microbial" HC5 concentration (the concentration that is hazardous to 5% of the tested taxa) and derived from acute single species toxicity tests on fish, invertebrates and primary producers (including algae) on the community structure and functioning of heterotrophic microbes (bacteria and aquatic fungi) in a semi-field study, using novel molecular techniques. In our study, a treatment-related effect of tebuconazole (238 µg/L) on either fungal biomass associated with leaf material or leaf decomposition or the composition of the fungal community associated with sediment could not be demonstrated. Moreover, treatment-related effects on bacterial communities associated with sediment and leaf material were not detected. However, tebuconazole exposure did significantly reduce conidia production and altered fungal community composition associated with leaf material. An effect on a higher trophic level was observed when Gammarus pulex were fed tebuconazole-exposed leaves, which caused a significant decrease in their feeding rate. Therefore, tebuconazole may affect aquatic fungi and fungally mediated processes even when applied at its "non-microbial" HC5 concentration.


Subject(s)
Aquatic Organisms/drug effects , Fungicides, Industrial/toxicity , Triazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Ecosystem , Invertebrates
2.
Ecotoxicology ; 21(5): 1550-69, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22555811

ABSTRACT

The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 µg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT50) of metiram was approximately 1-6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOEC(community) = 36 µg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 µg a.i./L on isolated sampling days and a NOEC of 36 µg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 µg a.i./L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOEC(microcosm)) was 12-36 µg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period < 8 weeks).


Subject(s)
Ditiocarb/toxicity , Fresh Water/chemistry , Fungicides, Industrial/toxicity , Pesticide Residues/toxicity , Rotifera/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cyanobacteria/drug effects , Cyanobacteria/metabolism , Ditiocarb/analysis , Dose-Response Relationship, Drug , Ecosystem , Endpoint Determination , Environmental Monitoring/methods , Fungicides, Industrial/analysis , Half-Life , Multivariate Analysis , Pesticide Residues/analysis , Phytoplankton/drug effects , Phytoplankton/metabolism , Risk Assessment , Rotifera/metabolism , Water Pollutants, Chemical/analysis , Zooplankton/drug effects , Zooplankton/metabolism
3.
Aquat Toxicol ; 104(1-2): 32-7, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21536010

ABSTRACT

The energy stored in coarse particulate organic matter, e.g. leaf litter, is released to aquatic ecosystems by breakdown processes involving microorganisms and leaf shredding invertebrates. The palatability of leaves and thus the feeding of shredders on leaf material are highly influenced by microorganisms. However, implications in the colonization of leaves by microorganisms (=conditioning) caused by chemical stressors are rarely studied. Our laboratory experiments, therefore, investigated for the first time effects of a fungicide on the conditioning process of leaf material by means of food-choice experiments using Gammarus fossarum (Crustacea: Amphipoda). Additionally, microbial analyses were conducted to facilitate the mechanistic understanding of the observed behavior. Gammarids significantly preferred control leaf discs over those conditioned in presence of the fungicide tebuconazole at concentrations of 50 and 500 µg/L. Besides the decrease of fungal biomass with increasing fungicide concentration, also the leaf associated fungal community composition showed that species preferred by gammarids, such as Alatospora acumunata, Clavariopsis aquatica, or Flagellospora curvula, were more frequent in the control. Tetracladium marchalianum, however, which is rejected by gammarids, was abundant in all treatments suggesting an increasing importance of this species for the lower leaf palatability--as other more palatable fungal species were almost absent--in the fungicide treatments. Hence, the food-choice behavior of G. fossarum seems to be a suitable indicator for alterations in leaf associated microbial communities, especially fungal species composition, caused by chemical stressors. Finally, this or similar test systems may be a reasonable supplement to the environmental risk assessment of chemicals in order to achieve its protection goals, as on the one hand, indirect effects may occur far below concentrations known to affect gammarids directly, and on the other hand, the observed shifts in leaf associated microbial communities may have perpetuating implications in leaf shredding invertebrates.


Subject(s)
Amphipoda/drug effects , Plant Leaves/microbiology , Triazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biodiversity , Feeding Behavior/drug effects , Plant Leaves/drug effects , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...