Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Biochem Biophys Res Commun ; 728: 150345, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38971001

ABSTRACT

The transfer of nitrogen fixation (nif) genes from diazotrophs to non-diazotrophic hosts is of increasing interest for engineering biological nitrogen fixation. A recombinant Escherichia coli strain expressing Azotobacter vinelandii 18 nif genes (nifHDKBUSVQENXYWZMF, nifiscA, and nafU) were previously constructed and showed nitrogenase activity. In the present study, we constructed several E. coli strain derivatives in which all or some of the 18 nif genes were additionally integrated into the fliK locus of the chromosome in various combinations. E. coli derivatives with the chromosomal integration of nifiscA, nifU, and nifS, which are involved in the biosynthesis of the [4Fe-4S] cluster of dinitrogenase reductase, exhibited enhanced nitrogenase activity. We also revealed that overexpression of E. coli fldA and ydbK, which encode flavodoxin and flavodoxin-reducing enzyme, respectively, enhanced nitrogenase activity, likely by facilitating electron transfer to dinitrogenase reductase. The additional expression of nifM, putatively involved in maturation of dinitrogenase reductase, further enhanced nitrogenase activity and the amount of soluble NifH. By combining these factors, we successfully improved nitrogenase activity 10-fold.


Subject(s)
Azotobacter vinelandii , Escherichia coli , Nitrogen Fixation , Nitrogenase , Azotobacter vinelandii/genetics , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nitrogenase/metabolism , Nitrogenase/genetics , Nitrogen Fixation/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Commun Biol ; 7(1): 443, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605181

ABSTRACT

Glutamate is an essential biological compound produced for various therapeutic and nutritional applications. The current glutamate production process requires a large amount of ammonium, which is generated through the energy-consuming and CO2-emitting Haber-Bosch process; therefore, the development of bio-economical glutamate production processes is required. We herein developed a strategy for glutamate production from aerial nitrogen using the nitrogen-fixing bacterium Klebsiella oxytoca. We showed that a simultaneous supply of glucose and citrate as carbon sources enhanced the nitrogenase activity of K. oxytoca. In the presence of glucose and citrate, K. oxytoca strain that was genetically engineered to increase the supply of 2-oxoglutarate, a precursor of glutamate synthesis, produced glutamate extracellularly more than 1 g L-1 from aerial nitrogen. This strategy offers a sustainable and eco-friendly manufacturing process to produce various nitrogen-containing compounds using aerial nitrogen.


Subject(s)
Glutamic Acid , Klebsiella oxytoca , Klebsiella oxytoca/genetics , Nitrogen , Citric Acid , Metabolic Engineering , Glucose
3.
J Gen Appl Microbiol ; 69(2): 91-101, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37357393

ABSTRACT

Thermus thermophilus biosynthesizes lysine via α-aminoadipate as an intermediate using the amino-group carrier protein, LysW, to transfer the attached α-aminoadipate and its derivatives to biosynthetic enzymes. A gene named lysV, which encodes a hypothetical protein similar to LysW, is present in the lysine biosynthetic gene cluster. Although the knockout of lysV did not affect lysine auxotrophy, lysV homologs are conserved in the lysine biosynthetic gene clusters of microorganisms belonging to the phylum Deinococcus-Thermus, suggesting a functional role for LysV in lysine biosynthesis. Pulldown assays and crosslinking experiments detected interactions between LysV and all of the biosynthetic enzymes requiring LysW for reactions, and the activities of most of all these enzymes were affected by LysV. These results suggest that LysV modulates the lysine biosynthesis through protein-protein interactions.


Subject(s)
Lysine , Thermus thermophilus , Thermus thermophilus/genetics , Thermus thermophilus/metabolism , Lysine/genetics , Lysine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Binding , Multigene Family
4.
ACS Chem Biol ; 18(2): 385-395, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36669120

ABSTRACT

(2,6)-Diamino-(5,7)-dihydroxyheptanoic acid (DADH), a non-proteinogenic amino acid, is converted to 1-azabicyclo[3.1.0]hexane ring-containing amino acids that are subsequently incorporated into ficellomycin and vazabitide A. The present study revealed that the sugar aminotransferase-like enzymes Fic25 and Vzb9, with a high amino acid sequence identity (56%) to each other, synthesized stereoisomers of DADH with (6S) and (6R) configurations, respectively. The crystal structure of the Fic25 complex with a PLP-(6S)-N2-acetyl-DADH adduct indicated that Asn45 and Gln197 (Asn205 and Ala53 in Vzb9) were located at positions that affected the stereochemistry of DADH being synthesized. A modeling study suggested that amino acid substitutions between Fic25 and Vzb9 allowed the enzymes to bind to the substrate with almost 180° rotation in the C5-C7 portions of the DADH molecules, accompanied by a concomitant shift in their C1-C4 portions. In support of this result, the replacement of two corresponding residues in Fic25 and Vzb9 increased (6R) and (6S) stereoselectivities, respectively. The different stereochemistry at C6 of DADH resulted in a different stereochemistry/orientation of the aziridine portion of the 1-azabicyclo[3.1.0]hexane ring, which plays a crucial role in biological activity, between ficellomycin and vazabitide A. A phylogenic analysis suggested that Fic25 and Vzb9 evolved from sugar aminotransferases to produce unusual building blocks for expanding the structural diversity of secondary metabolites.


Subject(s)
Amino Acids , Biological Products , Amino Acids/chemistry , Transaminases/metabolism , Hexanes , Sugars , Stereoisomerism
5.
J Am Chem Soc ; 144(35): 16164-16170, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35998388

ABSTRACT

Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.


Subject(s)
Aziridines , Sulfates , Aziridines/chemistry , DNA/chemistry , Mitomycin
6.
Biosci Biotechnol Biochem ; 85(4): 874-881, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33580690

ABSTRACT

In Corynebacterium glutamicum, pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (ODH) form a unique hybrid complex in which CgE1p and CgE1o are associated with the CgE2-CgE3 subcomplex. We analyzed the role of a lysine acetylation site in the peripheral subunit-binding domain of CgE2 in PDH and ODH functions. Acetylation-mimic substitution at Lys391 of CgE2 severely reduced the interaction of CgE2 with CgE1p and CgE3, but not with CgE1o, indicating the critical role of this residue in the assembly of CgE1p and CgE3 into the complex. It also suggested that Lys391 acetylation inhibited the binding of CgE1p and CgE3 to CgE2, thereby affecting PDH and ODH activities. Interestingly, the CgE2-K391R variant strain showed increased l-glutamate production and reduced pyruvate accumulation. Kinetic analysis suggested that the increased affinity of the K391R variant toward pyruvate might be advantageous for l-glutamate production.


Subject(s)
Corynebacterium glutamicum/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Lysine/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Acetylation , Kinetics , Protein Binding
7.
Microbiologyopen ; 9(10): e1113, 2020 10.
Article in English | MEDLINE | ID: mdl-32864855

ABSTRACT

Pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (ODH) are critical enzymes in central carbon metabolism. In Corynebacterium glutamicum, an unusual hybrid complex consisting of CgE1p (thiamine diphosphate-dependent pyruvate dehydrogenase, AceE), CgE2 (dihydrolipoamide acetyltransferase, AceF), CgE3 (dihydrolipoamide dehydrogenase, Lpd), and CgE1o (thiamine diphosphate-dependent 2-oxoglutarate dehydrogenase, OdhA) has been suggested. Here, we elucidated that the PDH-ODH hybrid complex in C. glutamicum probably consists of six copies of CgE2 in its core, which is rather compact compared with PDH and ODH in other microorganisms that have twenty-four copies of E2. We found that CgE2 formed a stable complex with CgE3 (CgE2-E3 subcomplex) in vitro, hypothetically comprised of two CgE2 trimers and four CgE3 dimers. We also found that CgE1o exists mainly as a hexamer in solution and is ready to form an active ODH complex when mixed with the CgE2-E3 subcomplex. Our in vitro reconstituted system showed CgE1p- and CgE1o-dependent inhibition of ODH and PDH, respectively, actively supporting the formation of the hybrid complex, in which both CgE1p and CgE1o associate with a single CgE2-E3. In gel filtration chromatography, all the subunits of CgODH were eluted in the same fraction, whereas CgE1p was eluted separately from CgE2-E3, suggesting a weak association of CgE1p with CgE2 compared with that of CgE1o. This study revealed the unique molecular architecture of the hybrid complex from C. glutamicum and the compact-sized complex would provide an advantage to determine the whole structure of the unusual hybrid complex.


Subject(s)
Bacterial Proteins/chemistry , Corynebacterium glutamicum/enzymology , Ketoglutarate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Corynebacterium glutamicum/chemistry , Corynebacterium glutamicum/genetics , Ketoglutarate Dehydrogenase Complex/genetics , Ketoglutarate Dehydrogenase Complex/metabolism , Kinetics , Protein Binding , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism
8.
J Bacteriol ; 201(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31036724

ABSTRACT

Glutamate dehydrogenase (GDH) from a thermophilic bacterium, Thermus thermophilus, is composed of two heterologous subunits, GdhA and GdhB. In the heterocomplex, GdhB acts as the catalytic subunit, whereas GdhA lacks enzymatic activity and acts as the regulatory subunit for activation by leucine. In the present study, we performed a pulldown assay using recombinant T. thermophilus, producing GdhA fused with a His tag at the N terminus, and found that TTC1249 (APRTh), which is annotated as adenine phosphoribosyltransferase but lacks the enzymatic activity, was copurified with GdhA. When GdhA, GdhB, and APRTh were coproduced in Escherichia coli cells, they were purified as a ternary complex. The ternary complex exhibited GDH activity that was activated by leucine, as observed for the GdhA-GdhB binary complex. Furthermore, AMP activated GDH activity of the ternary complex, whereas such activation was not observed for the GdhA-GdhB binary complex. This suggests that APRTh mediates the allosteric activation of GDH by AMP. The present study demonstrates the presence of complicated regulatory mechanisms of GDH mediated by multiple compounds to control the carbon-nitrogen balance in bacterial cells.IMPORTANCE GDH, which catalyzes the synthesis and degradation of glutamate using NAD(P)(H), is a widely distributed enzyme among all domains of life. Mammalian GDH is regulated allosterically by multiple metabolites, in which the antenna helix plays a key role to transmit the allosteric signals. In contrast, bacterial GDH was believed not to be regulated allosterically because it lacks the antenna helix. We previously reported that GDH from Thermus thermophilus (TtGDH), which is composed of two heterologous subunits, is activated by leucine. In the present study, we found that AMP activates TtGDH using a catalytically inactive APRTh as the sensory subunit. This suggests that T. thermophilus possesses a complicated regulatory mechanism of GDH to control carbon and nitrogen metabolism.


Subject(s)
Adenine Phosphoribosyltransferase/metabolism , Adenosine Monophosphate/metabolism , Bacterial Proteins/metabolism , Glutamate Dehydrogenase/metabolism , Leucine/metabolism , Thermus thermophilus/enzymology , Adenine Phosphoribosyltransferase/genetics , Bacterial Proteins/genetics , Catalysis , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Glutamate Dehydrogenase/genetics , Glutamic Acid/metabolism , Thermus thermophilus/genetics
9.
Extremophiles ; 23(4): 377-388, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30919057

ABSTRACT

Protein lysine Nε-acetylation is one of the important factors regulating cellular metabolism. We performed a proteomic analysis to identify acetylated proteins in the extremely thermophilic bacterium, Thermus thermophilus HB27. A total of 335 unique acetylated lysine residues, including many metabolic enzymes and ribosomal proteins, were identified in 208 proteins. Enzymes involved in amino acid metabolism were the most abundant among acetylated metabolic proteins. 2-Isopropylmalate synthase (IPMS), which catalyzes the first step in leucine biosynthesis, was acetylated at four lysine residues. Acetylation-mimicking mutations at Lys332 markedly decreased IPMS activity in vitro, suggesting that Lys332, which is located in subdomain II, plays a regulatory role in IPMS activity. We also investigated the acetylation-deacetylation mechanism of IPMS and revealed that it was acetylated non-enzymatically by acetyl-CoA and deacetylated enzymatically by TT_C0104. The present results suggest that leucine biosynthesis is regulated by post-translational protein modifications, in addition to feedback inhibition/repression, and that metabolic enzymes are regulated by protein acetylation in T. thermophilus.


Subject(s)
2-Isopropylmalate Synthase/metabolism , Bacterial Proteins/metabolism , Protein Processing, Post-Translational , Thermus thermophilus/enzymology , 2-Isopropylmalate Synthase/chemistry , 2-Isopropylmalate Synthase/genetics , Acetylation , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Leucine/biosynthesis , Thermus thermophilus/metabolism
10.
Microbiology (Reading) ; 165(1): 65-77, 2019 01.
Article in English | MEDLINE | ID: mdl-30394869

ABSTRACT

Nε-lysine acetylation and succinylation are ubiquitous post-translational modifications in eukaryotes and bacteria. In the present study, we showed a dynamic change in acetylation and succinylation of TufA, the translation elongation factor Tu, from Bacillus subtilis. Increased acetylation of TufA was observed during the exponential growth phase in LB and minimal glucose conditions, and its acetylation level decreased upon entering the stationary phase, while its succinylation increased during the late stationary phase. TufA was also succinylated during vegetative growth under minimal citrate or succinate conditions. Mutational analysis showed that triple succinylation mimic mutations at Lys306, Lys308 and Lys316 in domain-3 of TufA had a negative effect on B. subtilis growth, whereas the non-acylation mimic mutations at these three lysine residues did not. Consistent with the growth phenotypes, the triple succinylation mimic mutant showed 67 % decreased translation activity in vitro, suggesting a possibility that succinylation at the lysine residues in domain-3 decreases the translation activity. TufA, including Lys308, was non-enzymatically succinylated by physiological concentrations of succinyl-CoA. Lys42 in the G-domain was identified as the most frequently modified acetylation site, though its acetylation was likely dispensable for TufA translation activity and growth. Determination of the intracellular levels of acetylating substrates and TufA acetylation revealed that acetyl phosphate was responsible for acetylation at several lysine sites of TufA, but not for Lys42 acetylation. It was speculated that acetyl-CoA was likely responsible for Lys42 acetylation, though AcuA acetyltransferase was not involved. Zn2+-dependent AcuC and NAD+-dependent SrtN deacetylases were responsible for deacetylation of TufA, including Lys42. These findings suggest the potential regulatory roles of acetylation and succinylation in controlling TufA function and translation in response to nutrient environments in B. subtilis.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Lysine/metabolism , Peptide Elongation Factor Tu/metabolism , Succinic Acid/metabolism , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Amino Acid Motifs , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics
11.
Genes (Basel) ; 9(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30274179

ABSTRACT

Protein lysine acetylation is a widely conserved posttranslational modification in all three domains of life. Lysine acetylation frequently occurs in aminoacyl-tRNA synthetases (aaRSs) from many organisms. In this study, we determined the impact of the naturally occurring acetylation at lysine-73 (K73) in Escherichia coli class II alanyl-tRNA synthetase (AlaRS) on its alanylation activity. We prepared an AlaRS K73Ac variant in which Nε-acetyl-l-lysine was incorporated at position 73 using an expanded genetic code system in E. coli. The AlaRS K73Ac variant showed low activity compared to the AlaRS wild type (WT). Nicotinamide treatment or CobB-deletion in an E. coli led to elevated acetylation levels of AlaRS K73Ac and strongly reduced alanylation activities. We assumed that alanylation by AlaRS is affected by K73 acetylation, and the modification is sensitive to CobB deacetylase in vivo. We also showed that E. coli expresses two CobB isoforms (CobB-L and CobB-S) in vivo. CobB-S displayed the deacetylase activity of the AlaRS K73Ac variant in vitro. Our results imply a potential regulatory role for lysine acetylation in controlling the activity of aaRSs and protein synthesis.

12.
Biochem Biophys Res Commun ; 501(2): 465-470, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29738774

ABSTRACT

2-Isopropylmalate synthase (IPMS) catalyzes the first step of leucine biosynthesis and is regulated via feedback inhibition by leucine. The thermophilic bacterium, Thermus thermophilus HB27, has two IPMS homologous genes: TTC0847 and TTC0849, both of which are in the branched-chain amino acid biosynthetic gene cluster. Since enzymes involved in the leucine biosynthetic pathway are evolutionarily related to those in isoleucine biosynthesis, TTC0847 and TTC0849 are expected to function as IPMS or citramalate synthase, which is the first enzyme in the isoleucine biosynthetic pathway from pyruvate. We characterized these proteins in vitro and in vivo, and revealed that TTC0849 plays a key role in the biosynthesis of leucine and isoleucine, whereas TTC0847 is only involved in that of isoleucine.


Subject(s)
2-Isopropylmalate Synthase/metabolism , Thermus thermophilus/enzymology , 2-Isopropylmalate Synthase/chemistry , 2-Isopropylmalate Synthase/genetics , Amino Acid Sequence , Biosynthetic Pathways , Catalytic Domain , Gene Deletion , Isoleucine/metabolism , Leucine/metabolism , Models, Molecular , Multigene Family , Sequence Alignment , Thermus thermophilus/chemistry , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
13.
Environ Microbiol Rep ; 10(3): 299-309, 2018 06.
Article in English | MEDLINE | ID: mdl-29573367

ABSTRACT

Understanding the interplay between a plasmid and its host system is a bottleneck towards prediction of the fate of plasmid-harbouring strains in the natural environments. Here, we studied the impact of the conjugative plasmid pCAR1, involved in carbazole degradation, on the proteome of Pseudomonas putida KT2440 using SILAC method. Furthermore, we investigated two acyl lysine modifications (acetylation and succinylation) that respond to the metabolic status of the cell and are implicated in regulation of various cellular processes. The total proteome analysis revealed that the abundance of key proteins involved in metabolism, signal transduction and motility was affected by pCAR1 carriage. In total, we identified 1359 unique acetylation sites on 637 proteins and 567 unique succinylation sites on 259 proteins. Changes in the acylation status of proteins involved in metabolism and translation by pCAR1 carriage were detected. Remarkably, acylation was identified on proteins involved in important plasmid functions, including partitioning and carbazole degradation, and on nucleoid-associated proteins that play a key role in the functional interaction with the chromosome. This study provides a novel insight on the functional consequences of plasmid carriage and improves our understanding of the plasmid-host cross-talk.


Subject(s)
Bacterial Proteins/metabolism , Carbazoles/metabolism , Plasmids/metabolism , Pseudomonas putida/metabolism , Acetylation , Bacterial Proteins/genetics , Biodegradation, Environmental , Conjugation, Genetic , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Plasmids/genetics , Protein Biosynthesis , Proteome/genetics , Proteome/metabolism , Pseudomonas putida/genetics
14.
Glycoconj J ; 35(2): 165-176, 2018 04.
Article in English | MEDLINE | ID: mdl-29335800

ABSTRACT

C-Mannosylation, a protein-modification found in various eukaryotes, involves the attachment of a single mannose molecule to selected tryptophan residues of proteins. Since C-mannosyl tryptophan (CMW) was detected in human urine, it is generally thought that CMW is not catabolized inside our body and instead is excreted via the urine. This paper reports enrichment of a bacterial consortium from soil that degrades CMW. The bacteria grew in minimal medium supplemented with CMW as the carbon source. Interestingly, even after successive clonal picks of individual colonies, several species were still present in each colony as revealed by 16S rRNA gene sequence analysis, indicating that a single species may not be responsible for this activity. A next generation sequencing (NGS) analysis was therefore carried out in order to determine which bacteria were responsible for the catabolism of CMW. It was found that a species of Sphingomonadaceae family, but not others, increased with simultaneous decrease of CMW in the media, suggesting that this species is most likely the one that is actively involved in the degradation of CMW.


Subject(s)
Microbiota , Tryptophan/analogs & derivatives , Biotransformation , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Sphingomonadaceae/genetics , Sphingomonadaceae/isolation & purification , Sphingomonadaceae/metabolism , Tryptophan/metabolism
15.
Biosci Biotechnol Biochem ; 81(11): 2130-2138, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28899215

ABSTRACT

In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase (ODH) complex is negatively regulated by the unphosphorylated form of OdhI protein, which is critical for L-glutamate overproduction. We examined the potential impact of protein acylation at lysine (K)-132 of OdhI in C. glutamicum ATCC13032. The K132E succinylation-mimic mutation reduced the ability of OdhI to bind OdhA, the catalytic subunit of the ODH complex, which reduced the inhibition of ODH activity. In vitro succinylation of OdhI protein also reduced the ability to inhibit ODH, and the K132R mutation blocked the effect. These results suggest that succinylation at K132 may attenuate the OdhI function. Consistent with these results, the C. glutamicum mutant strain with OdhI-K132E showed decreased L-glutamate production. Our results indicated that not only phosphorylation but also succinylation of OdhI protein may regulate L-glutamate production in C. glutamicum.


Subject(s)
Corynebacterium glutamicum/metabolism , Enzyme Inhibitors/pharmacology , Glutamic Acid/biosynthesis , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Ketoglutarate Dehydrogenase Complex/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Corynebacterium glutamicum/enzymology , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/genetics , Models, Molecular , Mutation , Phosphorylation , Protein Domains , Succinic Acid/metabolism
16.
Proc Jpn Acad Ser B Phys Biol Sci ; 93(5): 297-321, 2017.
Article in English | MEDLINE | ID: mdl-28496053

ABSTRACT

Histone acetylation is a reversible posttranslational modification that plays a fundamental role in regulating eukaryotic gene expression and chromatin structure/function. Key enzymes for removing acetyl groups from histones are metal (zinc)-dependent and NAD+-dependent histone deacetylases (HDACs). The molecular function of HDACs have been extensively characterized by various approaches including chemical, molecular, and structural biology, which demonstrated that HDACs regulate cell proliferation, differentiation, and metabolic homeostasis, and that their alterations are deeply involved in various human disorders including cancer. Notably, drug discovery efforts have achieved success in developing HDAC-targeting therapeutics for treatment of several cancers. However, recent advancements in proteomics technology have revealed much broader aspects of HDACs beyond gene expression control. Not only histones but also a large number of cellular proteins are subject to acetylation by histone acetyltransferases (HATs) and deacetylation by HDACs. Furthermore, some of their structures can flexibly accept and hydrolyze other acyl groups on protein lysine residues. This review mainly focuses on structural aspects of HDAC enzymatic activity regulated by interaction with substrates, co-factors, small molecule inhibitors, and activators.


Subject(s)
Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Lysine/chemistry , Lysine/metabolism , Acetylation , Binding Sites , Enzyme Activation , Histone Deacetylases/ultrastructure , Models, Chemical , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
17.
FEBS Lett ; 591(11): 1611-1622, 2017 06.
Article in English | MEDLINE | ID: mdl-28486765

ABSTRACT

The NADP+ -dependent glutamate dehydrogenase from Corynebacterium glutamicum (CgGDH) is considered to be one of the key enzymes in the industrial fermentation of glutamate due to its high glutamate-producing activity. We determined the crystal structure of CgGDH complexed with NADP+ and 2-iminoglutarate. Among six subunits of hexameric CgGDH-binding NADP+ , only four subunits bind 2-iminoglutarate in a closed form, while the other two are in an open form. In the closed form, 2-iminoglutarate is bound to the substrate-binding site with the 2-imino group stacked by the nicotinamide ring of the coenzyme, suggesting a prehydride transfer state in a hypothesized reaction scheme with the imino intermediate. We also conducted MD simulations and provide insights into the extreme preference for the glutamate-producing reaction of CgGDH. DATABASE: The atomic coordinate and structure factors have been deposited in the RCSB PDB database under the accession number 5GUD.


Subject(s)
Corynebacterium glutamicum/enzymology , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Glutarates/metabolism , Imino Acids/metabolism , Molecular Dynamics Simulation , NADP/metabolism
18.
Mol Microbiol ; 104(4): 677-689, 2017 05.
Article in English | MEDLINE | ID: mdl-28256782

ABSTRACT

Protein Nε-acylation is emerging as a ubiquitous post-translational modification. In Corynebacterium glutamicum, which is utilized for industrial production of l-glutamate, the levels of protein acetylation and succinylation change drastically under the conditions that induce glutamate overproduction. Here, the acylation of phosphoenolpyruvate carboxylase (PEPC), an anaplerotic enzyme that supplies oxaloacetate for glutamate overproduction was characterized. It was shown that acetylation of PEPC at lysine 653 decreased enzymatic activity, leading to reduced glutamate production. An acetylation-mimic (KQ) mutant of K653 showed severely reduced glutamate production, while the corresponding KR mutant showed normal production levels. Using an acetyllysine-incorporated PEPC protein, we verified that K653-acetylation negatively regulates PEPC activity. In addition, NCgl0616, a sirtuin-type deacetylase, deacetylated K653-acetylated PEPC in vitro. Interestingly, the specific activity of PEPC was increased during glutamate overproduction, which was blocked by the K653R mutation or deletion of sirtuin-type deacetylase homologues. These findings suggested that deacetylation of K653 by NCgl0616 likely plays a role in the activation of PEPC, which maintains carbon flux under glutamate-producing conditions. PEPC deletion increased protein acetylation levels in cells under glutamate-producing conditions, supporting the hypothesis that PEPC is responsible for a large carbon flux change under glutamate-producing conditions.


Subject(s)
Corynebacterium glutamicum/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Acetylation , Corynebacterium glutamicum/genetics , Glutamic Acid/metabolism , Lysine/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Protein Processing, Post-Translational/genetics , Pyruvate Carboxylase/metabolism
19.
Extremophiles ; 21(1): 73-83, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27757697

ABSTRACT

Regulation of amino acid metabolism (RAM) domains are widely distributed among prokaryotes. In most cases, a RAM domain fuses with a DNA-binding domain to act as a transcriptional regulator. The extremely thermophilic bacterium, Thermus thermophilus, only carries a single gene encoding a RAM domain-containing protein on its genome. This protein is a stand-alone RAM domain protein (SraA) lacking a DNA-binding domain. Therefore, we hypothesized that SraA, which senses amino acids through its RAM domain, may interact with other proteins to modify its functions. In the present study, we identified anthranilate phosphoribosyltransferase (AnPRT), the second enzyme in the tryptophan biosynthetic pathway, as a partner protein that interacted with SraA in T. thermophilus. In the presence of tryptophan, SraA was assembled to a decamer and exhibited the ability to form a stable hetero-complex with AnPRT. An enzyme assay revealed that AnPRT was only inhibited by tryptophan in the presence of SraA. This result suggests a novel feedback control mechanism for tryptophan biosynthesis through an inter-RAM domain interaction in bacteria.


Subject(s)
Anthranilate Phosphoribosyltransferase/metabolism , Bacterial Proteins/metabolism , Thermus thermophilus/enzymology , Tryptophan/biosynthesis , Anthranilate Phosphoribosyltransferase/chemistry , Anthranilate Phosphoribosyltransferase/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Feedback, Physiological , Protein Binding , Protein Multimerization , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
20.
J Proteomics ; 155: 63-72, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28034645

ABSTRACT

Protein acetylation, the reversible addition of an acetyl group to lysine residues, is a protein post-translational modification ubiquitous in living cells. Although the involvement of protein acetylation in the regulation of primary metabolism has been revealed, the function of protein acetylation is largely unknown in secondary metabolism. Here, we characterized protein acetylation in Streptomyces griseus, a streptomycin producer. Protein acetylation was induced in the stationary and sporulation phases in liquid and solid cultures, respectively, in S. griseus. By comprehensive acetylome analysis, we identified 134 acetylated proteins with 162 specific acetylated sites. Acetylation was found in proteins related to primary metabolism and translation, as in other bacteria. However, StrM, a deoxysugar epimerase involved in streptomycin biosynthesis, was identified as a highly acetylated protein by 2-DE-based proteomic analysis. The Lys70 residue, which is critical for the enzymatic activity of StrM, was the major acetylation site. Thus, acetylation of Lys70 was presumed to abolish enzymatic activity of StrM. In accordance with this notion, an S. griseus mutant producing the acetylation-mimic K70Q StrM hardly produced streptomycin, though the K70Q mutation apparently decreased the stability of StrM. A putative lysine acetyltransferase (KAT) SGR1683 in S. griseus, as well as the Escherichia coli KAT YfiQ, acetylated Lys70 of StrM in vitro. Furthermore, absolute quantification analysis estimated that 13% of StrM molecules were acetylated in mycelium grown in solid culture for 3days. These results indicate that StrM acetylation is of biological significance. We propose that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. BIOLOGICAL SIGNIFICANCE: Protein acetylation has been extensively studied not only in eukaryotes, but also in prokaryotes. The acetylome has been analyzed in more than 14 bacterial species. Here, by comprehensive acetylome analysis, we showed that acetylation was found in proteins related to primary metabolism and translation in Streptomyces griseus, similarly to other bacteria. However, five proteins involved in secondary metabolism were also identified as acetylated proteins; these proteins are enzymes in the biosynthesis of streptomycin (StrB1 and StrS), grixazone (GriF), a nonribosomal peptide (NRPS1-2), and a siderophore (AlcC). Additionally, StrM in streptomycin biosynthesis was identified as a highly acetylated protein by 2-DE-based proteomic analysis; approximately 13% of StrM molecules were acetylated. The acetylation occurs at Lys70 to abolish the enzymatic activity of StrM, suggesting that StrM acetylation functions as a limiter of streptomycin biosynthesis in S. griseus. This is the first detailed analysis of protein acetylation of an enzyme involved in secondary metabolism.


Subject(s)
Bacterial Proteins/metabolism , Streptomyces griseus/metabolism , Streptomycin/biosynthesis , Acetylation
SELECTION OF CITATIONS
SEARCH DETAIL