Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Prostate ; 84(7): 644-655, 2024 May.
Article in English | MEDLINE | ID: mdl-38409853

ABSTRACT

BACKGROUND: Lipid reprogramming is a known mechanism to increase the energetic demands of proliferating cancer cells to drive and support tumorigenesis and progression. Elevated lipid droplets (LDs) are a well-known alteration of lipid reprogramming in many cancers, including prostate cancer (PCa), and are associated with high tumor aggressiveness as well as therapy resistance. The mechanism of LD accumulation and specific LD functions are still not well understood; however, it has been shown that LDs can form as a protective mechanism against lipotoxicity and lipid peroxidation in the cell. METHODS: This study investigated the significance of LDs in PCa. This was done by staining, imaging, image quantification, and flow cytometry analysis of LDs in PCa cells. Additionally, lipidomics and metabolomics experiments were performed to assess the difference of metabolites and lipids in control and treatment surviving cancer cells. Lastly, to assess clinical significance, multiple publicly available datasets were mined for LD-related data. RESULTS: Our study demonstrated that prostate and breast cancer cells that survive 72 h of chemotherapy treatment have elevated LDs. These LDs formed in tandem with elevated reactive oxygen species levels to sequester damaged and excess lipids created by oxidative stress, which promoted cell survival. Additionally, by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) (which catalyzes triglyceride synthesis into LDs) and treating with chemotherapy simultaneously, we were able to decrease the overall amount of LDs and increase cancer cell death compared to treating with chemotherapy alone. CONCLUSIONS: Overall, our study proposes a potential combination therapy of DGAT1 inhibitors and chemotherapy to increase cancer cell death.


Subject(s)
Lipid Droplets , Prostatic Neoplasms , Male , Humans , Lipid Droplets/metabolism , Lipid Droplets/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Prostatic Neoplasms/pathology , Lipid Metabolism/physiology , Lipids/physiology
3.
Med Oncol ; 38(11): 133, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34581907

ABSTRACT

Lipid droplets (LDs) are found throughout all phyla across the tree of life. Originating as pure energy stores in the most basic organisms, LDs have evolved to fill various roles as regulators of lipid metabolism, signaling, and trafficking. LDs have been noted in cancer cells and have shown to increase tumor aggressiveness and chemotherapy resistance. A certain transitory state of cancer cell, the polyaneuploid cancer cell (PACC), appears to have higher LD levels than the cancer cell from which they are derived. PACCs are postulated to be the mediators of metastasis and resistance in many different cancers. Utilizing the evolutionarily conserved roles of LDs to protect from cellular lipotoxicity allows PACCs to survive otherwise lethal stressors. By better understanding how LDs have evolved throughout different phyla we will identify opportunities to target LDs in PACCs to increase therapeutic efficiency in cancer cells.


Subject(s)
Lipid Droplets/physiology , Neoplasms/metabolism , Aneuploidy , Animals , Archaea/metabolism , Humans , Lipid Droplets/drug effects , Lipid Metabolism , Neoplasms/drug therapy , Plants/metabolism
4.
Med Oncol ; 38(5): 47, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33760984

ABSTRACT

Kinesins play important roles in the progression and development of cancer. Kinesin family member C1 (KIFC1), a minus end-directed motor protein, is a novel Kinesin involved in the clustering of excess centrosomes found in cancer cells. Recently KIFC1 has shown to play a role in the progression of many different cancers, however, the involvement of KIFC1 in the progression of prostate cancer (PCa) is still not well understood. This study investigated the expression and clinical significance of KIFC1 in PCa by utilizing multiple publicly available datasets to analyze KIFC1 expression in patient samples. High KIFC1 expression was found to be associated with high Gleason score, high tumor stage, metastatic lesions, high ploidy levels, and lower recurrence-free survival. These results reveal that high KIFC1 levels are associated with a poor prognosis for PCa patients and could act as a prognostic indicator for PCa patients as well.


Subject(s)
Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Kinesins/biosynthesis , Kinesins/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Databases, Genetic/statistics & numerical data , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasm Grading , Prognosis , Prostatic Neoplasms/diagnosis
5.
Prostate ; 79(13): 1489-1497, 2019 09.
Article in English | MEDLINE | ID: mdl-31376205

ABSTRACT

Cancer led to the deaths of more than 9 million people worldwide in 2018, and most of these deaths were due to metastatic tumor burden. While in most cases, we still do not know why cancer is lethal, we know that a total tumor burden of 1 kg-equivalent to one trillion cells-is not compatible with life. While localized disease is curable through surgical removal or radiation, once cancer has spread, it is largely incurable. The inability to cure metastatic cancer lies, at least in part, to the fact that cancer is resistant to all known compounds and anticancer drugs. The source of this resistance remains undefined. In fact, the vast majority of metastatic cancers are resistant to all currently available anticancer therapies, including chemotherapy, hormone therapy, immunotherapy, and systemic radiation. Thus, despite decades-even centuries-of research, metastatic cancer remains lethal and incurable. We present historical and contemporary evidence that the key actuators of this process-of tumorigenesis, metastasis, and therapy resistance-are polyploid giant cancer cells.


Subject(s)
Giant Cells/metabolism , Giant Cells/pathology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Animals , Carcinogenesis , Drug Resistance, Neoplasm , Humans , Male , Neoplasm Metastasis , Polyploidy , Prostatic Neoplasms/genetics
6.
Mol Cancer Res ; 17(8): 1759-1773, 2019 08.
Article in English | MEDLINE | ID: mdl-31164412

ABSTRACT

Cancer development requires a favorable tissue microenvironment. By deleting Myd88 in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells. The release of IL17 into the microenvironment elevates IκBζ in normal and RAS-transformed keratinocytes. Activation of IκBζ signaling is required for the expression of specific promoting factors induced by IL17 in normal keratinocytes and constitutively expressed in RAS-initiated keratinocytes. Deletion of Nfkbiz in keratinocytes impairs RAS-mediated benign tumor formation. Transcriptional profiling and gene set enrichment analysis of IκBζ-deficient RAS-initiated keratinocytes indicate that IκBζ signaling is common for RAS transformation of multiple epithelial cancers. Probing The Cancer Genome Atlas datasets using this transcriptional profile indicates that reduction of IκBζ signaling during cancer progression associates with poor prognosis in RAS-driven human cancers. IMPLICATIONS: The paradox that elevation of IκBζ and stimulation of IκBζ signaling through tumor extrinsic factors is required for RAS-mediated benign tumor formation while relative IκBζ expression is reduced in advanced cancers with poor prognosis implies that tumor cells switch from microenvironmental dependency early in carcinogenesis to cell-autonomous pathways during cancer progression.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/pathology , Interleukin-17/metabolism , Myeloid Differentiation Factor 88/physiology , Skin Neoplasms/pathology , T-Lymphocytes/metabolism , ras Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Interleukin-17/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Receptors, Interleukin-1 Type I/physiology , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , T-Lymphocytes/pathology , Tumor Microenvironment , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...