Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 121, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013215

ABSTRACT

HIV is difficult to eradicate due to the persistence of a long-lived reservoir of latently infected cells. Previous studies have shown that natural killer cells are important to inhibiting HIV infection, but it is unclear whether the administration of natural killer cells can reduce rebound viremia when anti-retroviral therapy is discontinued. Here we show the administration of allogeneic human peripheral blood natural killer cells delays viral rebound following interruption of anti-retroviral therapy in humanized mice infected with HIV-1. Utilizing genetically barcoded virus technology, we show these natural killer cells efficiently reduced viral clones rebounding from latency. Moreover, a kick and kill strategy comprised of the protein kinase C modulator and latency reversing agent SUW133 and allogeneic human peripheral blood natural killer cells during anti-retroviral therapy eliminated the viral reservoir in a subset of mice. Therefore, combinations utilizing latency reversal agents with targeted cellular killing agents may be an effective approach to eradicating the viral reservoir.


Subject(s)
Anti-HIV Agents/pharmacology , CD4-Positive T-Lymphocytes/immunology , HIV Infections/therapy , HIV-1/drug effects , Killer Cells, Natural/immunology , Protein Kinase Inhibitors/pharmacology , Viremia/therapy , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/virology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Coculture Techniques , Female , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Killer Cells, Natural/transplantation , Male , Mice , Mice, Transgenic , Protein Kinase C/genetics , Protein Kinase C/immunology , Spleen/drug effects , Spleen/immunology , Spleen/virology , Viral Load/drug effects , Viremia/genetics , Viremia/immunology , Viremia/virology , Virus Latency/drug effects , Virus Replication/drug effects
2.
Development ; 144(14): 2618-2628, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28619823

ABSTRACT

Mechanisms that regulate tissue-specific progenitors for maintenance and differentiation during development are poorly understood. Here, we demonstrate that the co-repressor protein Sin3a is crucial for lung endoderm development. Loss of Sin3a in mouse early foregut endoderm led to a specific and profound defect in lung development with lung buds failing to undergo branching morphogenesis and progressive atrophy of the proximal lung endoderm with complete epithelial loss at later stages of development. Consequently, neonatal pups died at birth due to respiratory insufficiency. Further analysis revealed that loss of Sin3a resulted in embryonic lung epithelial progenitor cells adopting a senescence-like state with permanent cell cycle arrest in G1 phase. This was mediated at least partially through upregulation of the cell cycle inhibitors Cdkn1a and Cdkn2c. At the same time, loss of endodermal Sin3a also disrupted cell differentiation of the mesoderm, suggesting aberrant epithelial-mesenchymal signaling. Together, these findings reveal that Sin3a is an essential regulator for early lung endoderm specification and differentiation.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Lung/embryology , Lung/metabolism , Repressor Proteins/metabolism , Animals , Animals, Newborn , Cell Cycle Checkpoints , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/physiology , Cyclin-Dependent Kinase Inhibitor p18/genetics , Cyclin-Dependent Kinase Inhibitor p18/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Endoderm/cytology , Endoderm/embryology , Endoderm/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Gene Expression Regulation, Developmental , Lung/cytology , Mice , Mice, Knockout , Organogenesis/genetics , Organogenesis/physiology , Pregnancy , Repressor Proteins/deficiency , Repressor Proteins/genetics , Signal Transduction , Sin3 Histone Deacetylase and Corepressor Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...