Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Ecol Evol ; 14(3): e10989, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38500851

ABSTRACT

Understanding fish movement is critical in determining the spatial scales in which to appropriately manage wild populations. Genetic markers provide a natural tagging approach to assess the degree of gene flow and population connectivity across a species distribution. We investigated the genetic structure of black bream Acanthopagrus butcheri across its entire distribution range in Australia, as well as regional scale gene flow across south-eastern Australia by undertaking a comprehensive analysis of the populations in estuaries across the region. We applied genome-wide sampling of single-nucleotide polymorphism (SNP) markers generated from restriction site-associated DNA sequencing. Genetic structure and potential gene flow was assessed using principal component analyses and admixture analyses (STRUCTURE). Using 33,493 SNPs, we detected broad scale genetic structuring, with limited gene flow among regional clusters (i.e. Western Australia, South Australia and western Victoria; and eastern Victoria, Tasmania and New South Wales). This is likely the result of unsuitable habitats, strong ocean currents (e.g. the Leeuwin Current and the East Australian Current), large water bodies (e.g. Bass Strait) and known biogeographical provinces across the continent. Local-scale genetic structuring was also identified across the south-eastern Australian estuaries sampled, reflecting that the coexistence of both migratory and resident individuals within populations (i.e. partial migration), and the movement of fish into coastal waters, still results in strong philopatry across the region. Instances of movement among estuaries at this spatial scale were primarily found between adjacent estuaries and were likely attributed to lone migrants utilising inshore coastal currents for movement beyond nearby habitats. Targeting SNP markers in A. butcheri at this continental scale highlighted how neither spatial proximity of estuaries nor black bream's ability to move into coastal waters reflects increased gene flow. Overall, our findings highlight the importance of location-specific management.

2.
Sci Rep ; 10(1): 7310, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32355206

ABSTRACT

Origins of polarization fatigue in ferroelectric capacitors under electric field cycling still remain unclear. Here, we experimentally identify origins of polarization fatigue in ferroelectric PbZr0.52Ti0.48O3 (PZT) thin-film capacitors by investigating their fatigue behaviours and interface structures. The PZT layers are epitaxially grown on SrRuO3-buffered SrTiO3 substrates by a pulsed laser deposition (PLD), and the capacitor top-electrodes are various, including SrRuO3 (SRO) made by in-situ PLD, Pt by in-situ PLD (Pt-inPLD) and ex-situ sputtering (Pt-sputtered). We found that fatigue behaviour of the capacitor is directly related to the top-electrode/PZT interface structure. The Pt-sputtered/PZT/SRO capacitor has a thin defective layer at the top interface and shows early fatigue while the Pt-inPLD/PZT/SRO and SRO/PZT/SRO capacitor have clean top-interfaces and show much more fatigue resistance. The defective dielectric layer at the Pt-sputtered/PZT interface mainly contains carbon contaminants, which form during the capacitor ex-situ fabrication. Removal of this dielectric layer significantly delays the fatigue onset. Our results clearly indicate that dielectric layer at ferroelectric capacitor interfaces is the main origin of polarization fatigue, as previously proposed in the charge injection model.

3.
Redox Biol ; 16: 359-380, 2018 06.
Article in English | MEDLINE | ID: mdl-29627744

ABSTRACT

Several diseases are associated with perturbations in redox signaling and aberrant hydrogen sulfide metabolism, and numerous analytical methods exist for the measurement of the sulfur-containing species affected. However, uncertainty remains about their concentrations and speciation in cells/biofluids, perhaps in part due to differences in sample processing and detection principles. Using ultrahigh-performance liquid chromatography in combination with electrospray-ionization tandem mass spectrometry we here outline a specific and sensitive platform for the simultaneous measurement of 12 analytes, including total and free thiols, their disulfides and sulfide in complex biological matrices such as blood, saliva and urine. Total assay run time is < 10 min, enabling high-throughput analysis. Enhanced sensitivity and avoidance of artifactual thiol oxidation is achieved by taking advantage of the rapid reaction of sulfhydryl groups with N-ethylmaleimide. We optimized the analytical procedure for detection and separation conditions, linearity and precision including three stable isotope labelled standards. Its versatility for future more comprehensive coverage of the thiol redox metabolome was demonstrated by implementing additional analytes such as methanethiol, N-acetylcysteine, and coenzyme A. Apparent plasma sulfide concentrations were found to vary substantially with sample pretreatment and nature of the alkylating agent. In addition to protein binding in the form of mixed disulfides (S-thiolation) a significant fraction of aminothiols and sulfide appears to be also non-covalently associated with proteins. Methodological accuracy was tested by comparing the plasma redox status of 10 healthy human volunteers to a well-established protocol optimized for reduced/oxidized glutathione. In a proof-of-principle study a deeper analysis of the thiol redox metabolome including free reduced/oxidized as well as bound thiols and sulfide was performed. Additional determination of acid-labile sulfide/thiols was demonstrated in human blood cells, urine and saliva. Using this simplified mass spectrometry-based workflow the thiol redox metabolome can be determined in samples from clinical and translational studies, providing a novel prognostic/diagnostic platform for patient stratification, drug monitoring, and identification of new therapeutic approaches in redox diseases.


Subject(s)
Disulfides/isolation & purification , Metabolome , Oxidative Stress , Sulfhydryl Compounds/isolation & purification , Chromatography, Liquid , Disulfides/blood , Disulfides/urine , Glutathione/blood , Glutathione/isolation & purification , Glutathione/urine , Humans , Mass Spectrometry , Oxidation-Reduction , Sulfhydryl Compounds/blood , Sulfhydryl Compounds/urine
4.
ACS Appl Mater Interfaces ; 10(17): 15240-15249, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29630331

ABSTRACT

In the present work, we study the hysteretic behavior in the electric-field-dependent capacitance and the current characteristics of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BCZT)/ZnO bilayers deposited on 0.7 wt % Nb-doped (001)-SrTiO3 (Nb:STO) substrates in a metal-ferroelectric-semiconductor (MFS) configuration. The X-ray diffraction measurements show that the BCZT and ZnO layers are highly oriented along the c-axis and have a single perovskite and wurtzite phases, respectively, whereas high-resolution transmission electron microscopy revealed very sharp Nb:STO/BCZT/ZnO interfaces. The capacitance-electric field ( C- E) characteristics of the bilayers exhibit a memory window of 47 kV/cm and a capacitance decrease of 22%, at a negative bias. The later result is explained by the formation of a depletion region in the ZnO layer. Moreover, an unusual resistive switching (RS) behavior is observed in the BCZT films, where the RS ratio can be 500 times enhanced in the BCZT/ZnO bilayers. The RS enhancement can be understood by the barrier potential profile modulation at the depletion region, in the BCZT/ZnO junction, via ferroelectric polarization switching of the BCZT layer. This work builds a bridge between the hysteretic behavior observed either in the C- E and current-electric field characteristics on a MFS structure.

5.
Phys Rev Lett ; 119(17): 177203, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29219472

ABSTRACT

With reduced dimensionality, it is often easier to modify the properties of ultrathin films than their bulk counterparts. Strain engineering, usually achieved by choosing appropriate substrates, has been proven effective in controlling the properties of perovskite oxide films. An emerging alternative route for developing new multifunctional perovskite is by modification of the oxygen octahedral structure. Here we report the control of structural oxygen octahedral rotation in ultrathin perovskite SrRuO_{3} films by the deposition of a SrTiO_{3} capping layer, which can be lithographically patterned to achieve local control. Using a scanning Sagnac magnetic microscope, we show an increase in the Curie temperature of SrRuO_{3} due to the suppression octahedral rotations revealed by the synchrotron x-ray diffraction. This capping-layer-based technique may open new possibilities for developing functional oxide materials.

6.
Sci Rep ; 7(1): 2654, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572605

ABSTRACT

An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar anisotropic Mn-O-Mn bond bending, which causes a significant anisotropic overlap of neighboring Mn orbitals. Due to the anisotropic double exchange interaction, it is found that the conductivity of the La2/3Sr1/3MnO3 film is enhanced when current is applied along the in-plane short crystalline axis. However, the anisotropic behavior is absent in the high temperature paramagnetic phase. Our results demonstrate anisotropic transport in the clean limit where phase separation is absent and the role of anisotropic phase percolation can be excluded.

7.
Rev Sci Instrum ; 88(12): 123902, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289154

ABSTRACT

To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM scanner and PLD target are integrated in a single support frame, combined with a fast sample transfer method, such that in situ microscopy can be utilized after subsequent deposition pulses. The in situ microscope can be operated from room temperature up to 700 °C and at (process) pressures ranging from the vacuum base pressure of 10-6 mbar up to 1 mbar, typical PLD conditions for the growth of oxide films. The performance of this instrument is demonstrated by resolving unit cell height surface steps and surface topography under typical oxide PLD growth conditions.

8.
Sci Rep ; 6: 32896, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27616448

ABSTRACT

The recently discovered structural reconstruction in the cuprate superlattice (SrCuO2)n/(SrTiO3)2 has been investigated across the critical value of n = 5 using resonant inelastic x-ray scattering (RIXS). We find that at the critical value of n, the cuprate layer remains largely in the bulk-like two-dimensional structure with a minority of Cu plaquettes being reconstructed. The partial reconstruction leads to quenching of the magnons starting at the Γ-point due to the minority plaquettes acting as scattering points. Although comparable in relative abundance, the doped charge impurities in electron-doped cuprate superconductors do not show this quenching of magnetic excitations.

9.
Orthopade ; 45(4): 302-13, 2016 Apr.
Article in German | MEDLINE | ID: mdl-27025869

ABSTRACT

BACKGROUND: The objective of patient-specific instrumentation (PSI Zimmer®) technology is to optimize positioning and selection of components as well as surgical procedure in uni- and bicompartimental knee replacement. The article contains a description of the planning and surgical technique and evaluates the method based on own results and literature. METHODS: Using MRI or CT scans a virtual 3D model of the joint is created in order to simulate and plan the implant positioning. According to these data, pin placement and/or cutting guides are produced, which enable the surgeon to transfer the planning to the surgical procedure. In a prospective comparative study 88 patients (44 per each of the two techniques) were operated by one surgeon receiving the same TKA using either MRI-based PSI or a conventional technique. The number of surgical trays, operating time, intraoperative changes and frontal alignment using a full leg x­ray (70 cases) were compared. In 17 patients the method was applied with unicondylar knee replacement. RESULTS: Anatomical abnormalities could be detected preoperatively and considered during the operation. With PSI the number of trays could be reduced and predictability of the component size was more precise. Intraoperative changes became necessary only for distal femoral (25 %) and proximal tibial (36 %) resection and tibial rotation (40 %). Alignment was more precise in the PSI cases DISCUSSION: PSI using the applied technique proved to be practicable and reliable. The advantages of precise planning became obvious. Results concerning alignment are inconsistent in the literature. Soft tissue balancing has only been included in the technique to a limited degree so far. PSI is still in an early stage of development and further development opportunities should be exploited before final assessment.


Subject(s)
Arthroplasty, Replacement, Knee/instrumentation , Knee Prosthesis , Osteoarthritis, Hip/surgery , Prosthesis Fitting/instrumentation , Surgery, Computer-Assisted/instrumentation , Surgery, Computer-Assisted/methods , Aged , Arthroplasty, Replacement, Knee/methods , Equipment Failure Analysis , Humans , Imaging, Three-Dimensional/instrumentation , Knee Joint/diagnostic imaging , Knee Joint/surgery , Middle Aged , Osteoarthritis, Hip/diagnostic imaging , Patient Selection , Patient-Specific Modeling , Precision Medicine/instrumentation , Precision Medicine/methods , Printing, Three-Dimensional/instrumentation , Prosthesis Design , Prosthesis Fitting/methods , Treatment Outcome
10.
Nat Mater ; 15(4): 425-31, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950593

ABSTRACT

Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.


Subject(s)
Information Storage and Retrieval , Manganese Compounds/chemistry , Oxygen/chemistry , Anisotropy , Rotation
11.
Nat Mater ; 14(8): 801-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26030303

ABSTRACT

Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metal-insulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La(1-x)Sr(x)MnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikov-de Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.

12.
Phys Rev Lett ; 113(23): 237402, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25526156

ABSTRACT

We report the formation of a nonmagnetic band insulator at the isopolar interface between the antiferromagnetic Mott-Hubbard insulator LaTiO_{3} and the antiferromagnetic charge transfer insulator LaFeO_{3}. By density-functional theory calculations, we find that the formation of this interface state is driven by the combination of O band alignment and crystal field splitting energy of the t_{2g} and e_{g} bands. As a result of these two driving forces, the Fe 3d bands rearrange and electrons are transferred from Ti to Fe. This picture is supported by x-ray photoelectron spectroscopy, which confirms the rearrangement of the Fe 3d bands and reveals an unprecedented charge transfer up to 1.2±0.2 e^{-}/interface unit cell in our LaTiO_{3}/LaFeO_{3} heterostructures.


Subject(s)
Lanthanum/chemistry , Models, Chemical , Oxides/chemistry , Titanium/chemistry , Electrons , Photoelectron Spectroscopy/methods
13.
Nat Commun ; 5: 5626, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25418631

ABSTRACT

The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. Here we show that, even in the absence of direct Cu-O-Mn covalent bonding, the interfacial CuO2 planes of superconducting La(1.85)Sr(0.15)CuO(4) thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La(0.66)Sr(0.33)MnO(3) ferromagnet. Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. The Dzyaloshinskii-Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO2 planes into the superconductor, eventually depressing its critical temperature.

14.
Placenta ; 34(12): 1223-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24183194

ABSTRACT

INTRODUCTION: Placental glutamine synthesis has been demonstrated in animals and is thought to increase the availability of this metabolically important amino acid to the fetus. Glutamine is of fundamental importance for cellular replication, cellular function and inter-organ nitrogen transfer. The objective of this study was to investigate the role of glutamate/glutamine metabolism by the isolated perfused human placenta in the provision of glutamine to the fetus. METHODS: Glutamate metabolism was investigated in the isolated dually perfused human placental cotyledon. U-¹³C-glutamate was used to investigate the movement of carbon and ¹5N-leucine to study movement of amino-nitrogen. Labelled amino acids were perfused via maternal or fetal arteries at defined flow rates. The enrichment and concentration of amino acids in the maternal and fetal veins were measured following 5 h of perfusion. RESULTS: Glutamate taken up from the maternal and fetal circulations was primarily converted into glutamine the majority of which was released into the maternal circulation. The glutamine transporter SNAT5 was localised to the maternal-facing membrane of the syncytiotrophoblast. Enrichment of ¹³C or ¹5N glutamine in placental tissue was lower than in either the maternal or fetal circulation, suggesting metabolic compartmentalisation within the syncytiotrophoblast. DISCUSSION: Placental glutamine synthesis may help ensure the placenta's ability to supply this amino acid to the fetus does not become limiting to fetal growth. Glutamine synthesis may also influence placental transport of other amino acids, metabolism, nitrogen flux and cellular regulation. CONCLUSIONS: Placental glutamine synthesis may therefore be a central mechanism in ensuring that the human fetus receives adequate nutrition and is able to maintain growth.


Subject(s)
Glutamine/metabolism , Maternal-Fetal Exchange , Models, Biological , Placenta/metabolism , Placental Circulation , Amino Acid Transport Systems, Neutral/metabolism , Biological Transport , Carbon Isotopes , Cell Membrane/metabolism , Female , Fetal Development , Glutamic Acid/metabolism , Humans , In Vitro Techniques , Kinetics , Leucine/metabolism , Nitrogen Isotopes , Perfusion , Placenta/blood supply , Placenta/cytology , Pregnancy , Trophoblasts/cytology , Trophoblasts/metabolism
15.
Rev Sci Instrum ; 84(12): 123704, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24387438

ABSTRACT

Atomic force microscopy is one of the most popular imaging tools with atomic resolution in different research fields. Here, a fast and gentle side approach for atomic force microscopy is proposed to image the same surface location and to reduce the time delay between modification and imaging without significant tip degradation. This reproducible approach to image the same surface location using atomic force microscopy shortly after, for example, any biological, chemical, or physical modification on a geometrically separated position has the potential to become widely used.

16.
Phys Rev Lett ; 104(16): 166804, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20482074

ABSTRACT

The perovskite SrTiO3-LaAlO3 structure has advanced to a model system to investigate the rich electronic phenomena arising at polar oxide interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO3 capping layer prevents atomic reconstruction at the LaAlO3 surface and triggers the electronic reconstruction at a significantly lower LaAlO3 film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.

17.
J Lipid Res ; 51(8): 2090-104, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20363834

ABSTRACT

The aim of the present study was to examine whether pretreatment with different fatty acids, as well as the liver X receptor (LXR) agonist T0901317, could modify metabolic switching of human myotubes. The n-3 FA eicosapentaenoic acid (EPA) increased suppressibility, the ability of glucose to suppress FA oxidation. Substrate-regulated flexibility, the ability to increase FA oxidation when changing from a high glucose, low fatty acid condition ("fed") to a high fatty acid, low glucose ("fasted") condition, was increased by EPA and other n-3 FAs. Adaptability, the capacity to increase FA oxidation with increasing FA availability, was enhanced after pretreatment with EPA, linoleic acid (LA), and palmitic acid (PA). T0901317 counteracted the effect of EPA on suppressibility and adaptability, but it did not affect these parameters alone. EPA per se accumulated less, however, EPA, LA, oleic acid, and T0901317 treatment increased the number of lipid droplets (LD) in myotubes. LD volume and intensity, as well as mitochondrial mass, were independent of FA pretreatment. Microarray analysis showed that EPA regulated more genes than the other FAs and that specific pathways involved in carbohydrate metabolism were induced only by EPA. The present study suggests a favorable effect of n-3 FAs on skeletal muscle metabolic switching and glucose utilization.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Biological Transport/drug effects , Energy Metabolism/drug effects , Fatty Acids, Omega-3/metabolism , Female , Gene Expression Profiling , Glucose/metabolism , Humans , Hydrocarbons, Fluorinated/pharmacology , Insulin/pharmacology , Liver X Receptors , Male , Middle Aged , Muscle Fibers, Skeletal/cytology , Oleic Acid/metabolism , Orphan Nuclear Receptors/agonists , Orphan Nuclear Receptors/metabolism , Oxidation-Reduction/drug effects , Signal Transduction/drug effects , Sulfonamides/pharmacology
18.
Orthopade ; 38(3): 238-47, 2009 Mar.
Article in German | MEDLINE | ID: mdl-19221710

ABSTRACT

BACKGROUND: Modular parts in femoral components used for hip arthroplasty are reported to be predilection sites for mechanical failure. The possible benefit of their use is therefore controversial. PATIENTS AND METHOD: We report the outcome of 97 revision hip arthroplasties using a non-cemented femoral component with a modular metaphyseal part and an interchangeable neck (Profemur). The femoral defects treated included Paprosky types I-III. The average follow-up was 5 years (range 3-10 years). DISCUSSION: No mechanical failure of the modular parts and taper connections has been observed so far. The percentage of patients with a balanced leg length increased from 32% preoperative to 65% postoperative. The mean leg length discrepancy could be reduced from 1.4 cm preoperative to 0.5 cm postoperative. A total of 5 re-revisions were required, including 2 cases of infection. The cumulative survival of the implants due to aseptic loosening was 96.5%. CONCLUSION: Because of the achieved results the use of the modular stem investigated in this study can be classified as safe and effective for revision hip arthroplasty. The interchangeable neck proved to be a useful completion of the revision system.


Subject(s)
Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/statistics & numerical data , Femoral Fractures/surgery , Hip Prosthesis/statistics & numerical data , Prosthesis-Related Infections/epidemiology , Aged , Comorbidity , Equipment Failure Analysis , Female , Femoral Fractures/epidemiology , Germany/epidemiology , Humans , Incidence , Male , Middle Aged , Prosthesis Design , Prosthesis Failure , Reoperation/statistics & numerical data , Treatment Outcome
19.
Phys Rev Lett ; 100(12): 127002, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18517903

ABSTRACT

The polar Kerr effect in the high-T_(c) superconductor YBa2Cu3O6+x was measured at zero magnetic field with high precision using a cyogenic Sagnac fiber interferometer. We observed nonzero Kerr rotations of order approximately 1 microrad appearing near the pseudogap temperature T(*) and marking what appears to be a true phase transition. Anomalous magnetic behavior in magnetic-field training of the effect suggests that time reversal symmetry is already broken above room temperature.

20.
J Phys Condens Matter ; 20(26): 264007, 2008 Jul 02.
Article in English | MEDLINE | ID: mdl-21694341

ABSTRACT

Inspired by the work of Ohtomo and Hwang in 2004, we shed new light on thin films of layered cuprate high-T(c) superconductors (HTS). In principle all HTS materials consist of charged perovskite-like layers which in thin films can lead to polar discontinuities at the interfaces of different materials. The resulting charge redistribution has to occur but we expect it to be far more complex than in the LaAlO(3)/SrTiO(3) system since copper can be multivalent. This makes it hard to predict what will happen in terms of transport or even magnetic properties compared to the 'simple' insulator LaAlO(3). Nevertheless, we point out that the picture of systems of charged layers is important and necessary to fully understand heterostructures of these complex materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...