Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 2(3): pgad029, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896132

ABSTRACT

SARS-CoV-2 induces severe organ damage not only in the lung but also in the liver, heart, kidney, and intestine. It is known that COVID-19 severity correlates with liver dysfunction, but few studies have investigated the liver pathophysiology in COVID-19 patients. Here, we elucidated liver pathophysiology in COVID-19 patients using organs-on-a-chip technology and clinical analyses. First, we developed liver-on-a-chip (LoC) which recapitulating hepatic functions around the intrahepatic bile duct and blood vessel. We found that hepatic dysfunctions, but not hepatobiliary diseases, were strongly induced by SARS-CoV-2 infection. Next, we evaluated the therapeutic effects of COVID-19 drugs to inhibit viral replication and recover hepatic dysfunctions, and found that the combination of anti-viral and immunosuppressive drugs (Remdesivir and Baricitinib) is effective to treat hepatic dysfunctions caused by SARS-CoV-2 infection. Finally, we analyzed the sera obtained from COVID-19 patients, and revealed that COVID-19 patients, who were positive for serum viral RNA, are likely to become severe and develop hepatic dysfunctions, as compared with COVID-19 patients who were negative for serum viral RNA. We succeeded in modeling the liver pathophysiology of COVID-19 patients using LoC technology and clinical samples.

2.
Sci Adv ; 8(38): eabo6783, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36129989

ABSTRACT

In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin-mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2-induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2-induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19.


Subject(s)
COVID-19 , Claudin-5/metabolism , SARS-CoV-2 , Claudin-5/genetics , Endothelial Cells/metabolism , Fluvastatin/metabolism , Fluvastatin/pharmacology , Humans , Tight Junction Proteins/metabolism
3.
ACS Omega ; 6(38): 24859-24865, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604667

ABSTRACT

Polydimethylsiloxane (PDMS) is widely used to fabricate microfluidic organs-on-chips. Using these devices (PDMS-based devices), the mechanical microenvironment of living tissues, such as pulmonary respiration and intestinal peristalsis, can be reproduced in vitro. However, the use of PDMS-based devices in drug discovery research is limited because of their extensive absorption of drugs. In this study, we investigated the feasibility of the tetrafluoroethylene-propylene (FEPM) elastomer to fabricate a hepatocyte-on-a-chip (FEPM-based hepatocyte chip) with lower drug absorption. The FEPM-based hepatocyte chip expressed drug-metabolizing enzymes, drug-conjugating enzymes, and drug transporters. Also, it could produce human albumin. Although the metabolites of midazolam and bufuralol were hardly detected in the PDMS-based hepatocyte chip, they were detected abundantly in the FEPM-based hepatocyte chip. Finally, coumarin-induced hepatocyte cytotoxicity was less severe in the PDMS-based hepatocyte chip than in the FEPM-based hepatocyte chip, reflecting the different drug absorptions of the two chips. In conclusion, the FEPM-based hepatocyte chip could be a useful tool in drug discovery research, including drug metabolism and toxicity studies.

4.
ACS Biomater Sci Eng ; 7(8): 3648-3657, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34283567

ABSTRACT

A liver-on-a-chip (liver-chip) is a microfluidic device carrying liver cells such as human hepatocytes. It is used to reproduce a part of liver function. Many microfluidic devices are composed of polydimethylsiloxane (PDMS), which is a type of silicone elastomer. PDMS is easy to process and suitable for cell observation, but its high hydrophobicity carries the risk of drug absorption. In this study, we evaluated drug absorption to the PDMS device and investigated the drug responsiveness of human hepatocytes cultured in the PDMS device (hepatocyte-chips). First, the absorption rates of 12 compounds to the PDMS device were measured. The absorption rates of midazolam, bufuralol, cyclosporine A, and verapamil were 92.9, 71.7, 71.4, and 99.6%, respectively, but the other compounds were poorly absorbed. Importantly, the absorption rate of the compounds was correlated with their octanol/water distribution coefficient (log D) values (R2 = 0.76). Next, hepatocyte-chips were used to examine the response to drugs, which are typically used to evaluate hepatic functions. Using the hepatocyte-chips, we could confirm the responsiveness of drugs including cytochrome P450 (CYP) inducers and farnesoid X receptor (FXR) ligands. We believe that our findings will contribute to drug discovery research using PDMS-based liver-chips.


Subject(s)
Lab-On-A-Chip Devices , Pharmaceutical Research , Dimethylpolysiloxanes , Hepatocytes , Humans , Hydrophobic and Hydrophilic Interactions
5.
Biomed Microdevices ; 22(2): 34, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32377802

ABSTRACT

A fundamental limitation in the derivation of hematopoietic stem and progenitor cells is the imprecise understanding of human developmental hematopoiesis. Herein we established a multilayer microfluidic Aorta-Gonad-Mesonephros (AGM)-on-a-chip to emulate developmental hematopoiesis from pluripotent stem cells. The device consists of two layers of microchannels separated by a semipermeable membrane, which allows the co-culture of human hemogenic endothelial (HE) cells and stromal cells in a physiological relevant spatial arrangement to replicate the structure of the AGM. HE cells derived from human induced pluripotent stem cells (hiPSCs) were cultured on a layer of mesenchymal stromal cells in the top channel while vascular endothelial cells were co-cultured on the bottom side of the membrane within the microfluidic device. We show that this AGM-on-a-chip efficiently derives endothelial-to-hematopoietic transition (EHT) from hiPSCs compared with regular suspension culture. The presence of mesenchymal stroma and endothelial cells renders functional HPCs in vitro. We propose that the AGM-on-a-chip could serve as a platform to dissect the cellular and molecular mechanisms of human developmental hematopoiesis.


Subject(s)
Aorta/cytology , Biomimetics/instrumentation , Gonads/cytology , Hematopoiesis , Lab-On-A-Chip Devices , Mesonephros/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...