Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 86(3): 287-293, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-34894229

ABSTRACT

Previously, we succeeded to produce the core structure of the host-selective ACR toxin (1) on brown leaf spot on rough lemon when the polyketide synthase ACRTS2 gene was heterologously expressed in Aspergillus oryzae (AO). To confirm the production of 1 in AO, the detection limit and suppressing decarboxylation were improved, and these efforts led us to conclude the direct production of 1 instead of its decarboxylation product. During this examination, minor ACR-toxin-related metabolites were found. Their structure determination enabled us to propose a decarboxylation mechanism and a novel branching route forming byproducts from the coupling of the dihydropyrone moiety of 1 with the acetaldehyde and kojic acid abundant in AO. The involvement of putative cyclase ACRTS3 in the chain release of linear polyketide was excluded by the coexpression analysis of ACRTS2 and ACRTS3. Taken together, we concluded that the production of 1 in AO is solely responsible for ACRTS2.


Subject(s)
Aspergillus oryzae
2.
Angew Chem Int Ed Engl ; 60(43): 23403-23411, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34448341

ABSTRACT

Highly reducing polyketide synthases (HR-PKSs) produce structurally diverse polyketides (PKs). The PK diversity is constructed by a variety of factors, including the ß-keto processing, chain length, methylation pattern, and relative and absolute configurations of the substituents. We examined the stereochemical course of the PK processing for the synthesis of polyhydroxy PKs such as phialotides, phomenoic acid, and ACR-toxin. Heterologous expression of a HR-PKS gene, a trans-acting enoylreductase gene, and a truncated non-ribosomal peptide synthetase gene resulted in the formation of a linear PK with multiple stereogenic centers. The absolute configurations of the stereogenic centers were determined by chemical degradation followed by comparison of the degradation products with synthetic standards. A stereochemical rule was proposed to explain the absolute configurations of other reduced PKs and highlights an error in the absolute configurations of a reported structure. The present work demonstrates that focused functional analysis of functionally related HR-PKSs leads to a better understanding of the stereochemical course.


Subject(s)
Fungal Proteins/chemistry , Polyketide Synthases/chemistry , Polyketides/chemical synthesis , Ascomycota/enzymology , Fungal Proteins/genetics , Mutation , Oxidation-Reduction , Polyketide Synthases/genetics , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...