Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Allergy Clin Immunol ; 151(5): 1277-1285, 2023 05.
Article in English | MEDLINE | ID: mdl-36736797

ABSTRACT

BACKGROUND: Epithelial remodeling is a histopathologic feature of chronic inflammatory airway diseases including chronic rhinosinusitis (CRS). Cell-type shifts and their relationship to CRS endotypes and severity are incompletely described. OBJECTIVE: We sought to understand the relationship of epithelial cell remodeling to inflammatory endotypes and disease outcomes in CRS. METHODS: Using cell-type transcriptional signatures derived from epithelial single-cell sequencing, we analyzed bulk RNA-sequencing data from sinus epithelial brushings obtained from patients with CRS with and without nasal polyps in comparison to healthy controls. RESULTS: The airway epithelium in nasal polyposis displayed increased tuft cell transcripts and decreased ciliated cell transcripts along with an IL-13 activation signature. In contrast, CRS without polyps showed an IL-17 activation signature. IL-13 activation scores were associated with increased tuft cell, goblet cell, and mast cell scores and decreased ciliated cell scores. Furthermore, the IL-13 score was strongly associated with a previously reported activated ("polyp") tuft cell score and a prostaglandin E2 activation signature. The Lund-Mackay score, a computed tomographic metric of sinus opacification, correlated positively with activated tuft cell, mast cell, prostaglandin E2, and IL-13 signatures and negatively with ciliated cell transcriptional signatures. CONCLUSIONS: These results demonstrate that cell-type alterations and prostaglandin E2 stimulation are key components of IL-13-induced epithelial remodeling in nasal polyposis, whereas IL-17 signaling is more prominent in CRS without polyps, and that clinical severity correlates with the degree of IL-13-driven epithelial remodeling.


Subject(s)
Nasal Polyps , Rhinitis , Sinusitis , Humans , Interleukin-13 , Nasal Polyps/pathology , Rhinitis/pathology , Interleukin-17 , Dinoprostone , Sinusitis/pathology , Chronic Disease , Nasal Mucosa/pathology
2.
Annu Rev Pathol ; 18: 311-335, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36351364

ABSTRACT

Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.


Subject(s)
Intestinal Mucosa , Signal Transduction , Humans , Cell Lineage , Intestinal Mucosa/metabolism , Stem Cells , Homeostasis , Epithelial Cells/metabolism
3.
Elife ; 112022 09 08.
Article in English | MEDLINE | ID: mdl-36073526

ABSTRACT

While the lung bears significant regenerative capacity, severe viral pneumonia can chronically impair lung function by triggering dysplastic remodeling. The connection between these enduring changes and chronic disease remains poorly understood. We recently described the emergence of tuft cells within Krt5+ dysplastic regions after influenza injury. Using bulk and single-cell transcriptomics, we characterized and delineated multiple distinct tuft cell populations that arise following influenza clearance. Distinct from intestinal tuft cells which rely on Type 2 immune signals for their expansion, neither IL-25 nor IL-4ra signaling are required to drive tuft cell development in dysplastic/injured lungs. In addition, tuft cell expansion occurred independently of type I or type III interferon signaling. Furthermore, tuft cells were also observed upon bleomycin injury, suggesting that their development may be a general response to severe lung injury. While intestinal tuft cells promote growth and differentiation of surrounding epithelial cells, in the lungs of tuft cell deficient mice, Krt5+ dysplasia still occurs, goblet cell production is unchanged, and there remains no appreciable contribution of Krt5+ cells into more regionally appropriate alveolar Type 2 cells. Together, these findings highlight unexpected differences in signals necessary for murine lung tuft cell amplification and establish a framework for future elucidation of tuft cell functions in pulmonary health and disease.


Subject(s)
Cytokines , Influenza, Human , Animals , Bleomycin , Goblet Cells , Humans , Lung , Mice
4.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36044899

ABSTRACT

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Subject(s)
Mite Infestations , Mites , Animals , Cytokines , Hair Follicle/pathology , Humans , Immunity, Innate , Inflammation , Interleukin-13 , Lymphocytes/pathology , Mice , Mite Infestations/complications , Mite Infestations/parasitology , Mite Infestations/pathology , Symbiosis
5.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35608904

ABSTRACT

Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dinoprostone , Interleukin-13/metabolism , Mice , Respiratory System
6.
Sci Immunol ; 7(69): eabj1080, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35245089

ABSTRACT

Inflammation and dysfunction of the extrahepatic biliary tree are common causes of human pathology, including gallstones and cholangiocarcinoma. Despite this, we know little about the local regulation of biliary inflammation. Tuft cells, rare sensory epithelial cells, are particularly prevalent in the mucosa of the gallbladder and extrahepatic bile ducts. Here, we show that biliary tuft cells express a core genetic tuft cell program in addition to a tissue-specific gene signature and, in contrast to small intestinal tuft cells, decreased postnatally, coincident with maturation of bile acid production. Manipulation of enterohepatic bile acid recirculation revealed that tuft cell abundance is negatively regulated by bile acids, including in a model of obstructive cholestasis in which inflammatory infiltration of the biliary tree correlated with loss of tuft cells. Unexpectedly, tuft cell-deficient mice spontaneously displayed an increased gallbladder epithelial inflammatory gene signature accompanied by neutrophil infiltration that was modulated by the microbiome. We propose that biliary tuft cells function as bile acid-sensitive negative regulators of inflammation in biliary tissues and serve to limit inflammation under homeostatic conditions.


Subject(s)
Bile Acids and Salts , Biliary Tract , Animals , Epithelial Cells/physiology , Inflammation , Mice , Neutrophils
7.
Crit Care Clin ; 37(4): 733-748, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34548131

ABSTRACT

Acute respiratory distress syndrome is a common condition among critically ill patients, but remains under-recognized and undertreated. Under-recognition may result from confusion over the clinical inclusion criteria, as well as a misunderstanding of the complex relationship between the clinical syndrome, the variable histopathologic patterns, and the myriad clinical disorders that cause acute respiratory distress syndrome. The identification of the clinical syndrome and determination of the causal diagnosis are both required to optimize patient outcomes. Here we review the definition, discuss pitfalls in recognizing acute respiratory distress syndrome and consider an approach to ascertain specific etiologies of acute respiratory distress syndrome.


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
8.
Mucosal Immunol ; 14(6): 1295-1305, 2021 11.
Article in English | MEDLINE | ID: mdl-34290377

ABSTRACT

Innate lymphoid cells (ILCs) are tissue-resident effectors poised to activate rapidly in response to local signals such as cytokines. To preserve homeostasis, ILCs must employ multiple pathways, including tonic suppressive mechanisms, to regulate their primed state and prevent inappropriate activation and immunopathology. Such mechanisms remain incompletely characterized. Here we show that cytokine-inducible SH2-containing protein (CISH), a suppressor of cytokine signaling (SOCS) family member, is highly and constitutively expressed in type 2 innate lymphoid cells (ILC2s). Mice that lack CISH either globally or conditionally in ILC2s show increased ILC2 expansion and activation, in association with reduced expression of genes inhibiting cell-cycle progression. Augmented proliferation and activation of CISH-deficient ILC2s increases basal and inflammation-induced numbers of intestinal tuft cells and accelerates clearance of the model helminth, Nippostrongylus brasiliensis, but compromises innate control of Salmonella typhimurium. Thus, CISH constrains ILC2 activity both tonically and after perturbation, and contributes to the regulation of immunity in mucosal tissue.


Subject(s)
Immunity, Innate , Immunomodulation , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Host-Parasite Interactions , Host-Pathogen Interactions , Immunomodulation/genetics , Mice , Mice, Knockout , Suppressor of Cytokine Signaling Proteins/deficiency , Suppressor of Cytokine Signaling Proteins/metabolism
9.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-33974563

ABSTRACT

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare but serious disease with poorly understood mechanisms. Here, we report that patients with EGPA have elevated levels of TSLP, IL-25, and soluble ST2, which are well-characterized cytokine "alarmins" that activate or modulate type 2 innate lymphoid cells (ILC2s). Patients with active EGPA have a concurrent reduction in circulating ILC2s, suggesting a role for ILC2s in the pathogenesis of this disease. To explore the mechanism of these findings in patients, we established a model of EGPA in which active vasculitis and pulmonary hemorrhage were induced by IL-33 administration in predisposed, hypereosinophilic mice. In this model, induction of pulmonary hemorrhage and vasculitis was dependent on ILC2s and signaling through IL4Rα. In the absence of IL4Rα or STAT6, IL-33-treated mice had less vascular leak and pulmonary edema, less endothelial activation, and reduced eotaxin production, cumulatively leading to a reduction of pathologic eosinophil migration into the lung parenchyma. These results offer a mouse model for use in future mechanistic studies of EGPA, and they suggest that IL-33, ILC2s, and IL4Rα signaling may be potential targets for further study and therapeutic targeting in patients with EGPA.


Subject(s)
Churg-Strauss Syndrome , Interleukin-33 , Lymphocytes , Animals , Autoimmunity/immunology , Churg-Strauss Syndrome/immunology , Churg-Strauss Syndrome/metabolism , Churg-Strauss Syndrome/pathology , Disease Models, Animal , Humans , Immunity, Innate/immunology , Interleukin-33/immunology , Interleukin-33/metabolism , Lung/metabolism , Lung/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice
10.
Immunity ; 48(6): 1081-1090, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29924974

ABSTRACT

Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4+ T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphoid Tissue/embryology , Lymphoid Tissue/growth & development , Animals , Cell Differentiation/immunology , Humans
12.
Cell Metab ; 21(5): 692-705, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25955206

ABSTRACT

Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes.


Subject(s)
Adipose Tissue, Brown/innervation , Adipose Tissue, Brown/physiology , Body Temperature Regulation , Glucose/metabolism , Lipid Metabolism , Serotonergic Neurons/physiology , Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Adipose Tissue, White/innervation , Adipose Tissue, White/physiology , Animals , Female , Gene Expression Regulation , Homeostasis , Ion Channels/genetics , Male , Mice , Mitochondrial Proteins/genetics , Thermogenesis , Uncoupling Protein 1
13.
Cell ; 160(5): 816-827, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25723161

ABSTRACT

While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation.


Subject(s)
Disease Susceptibility , Homeostasis , Inflammation/physiopathology , Diabetes Mellitus/metabolism , Humans , Models, Biological
14.
Adipocyte ; 2(2): 113-8, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23805409

ABSTRACT

Inflammation accompanies obesity and its comorbidities-type 2 diabetes, non-alcoholic fatty liver disease and atherosclerosis, among others-and may contribute to their pathogenesis. Yet the cellular machinery that links nutrient sensing to inflammation remains incompletely characterized. The protein deacetylase sirtuin-1 (SirT1) is activated by energy depletion and plays a critical role in the mammalian response to fasting. More recently it has been implicated in the repression of inflammation. SirT1 mRNA and protein expression are suppressed in obese rodent and human white adipose tissue, while experimental reduction of SirT1 in adipocytes and macrophages causes low-grade inflammation that mimics that observed in obesity. Thus suppression of SirT1 during overnutrition may be critical to the development of obesity-associated inflammation. This effect is attributable to multiple actions of SirT1, including direct deacetylation of NFκB and chromatin remodeling at inflammatory gene promoters. In this work, we report that SirT1 is also suppressed by diet-induced obesity in macrophages, which are key contributors to the ontogeny of metabolic inflammation. Thus, SirT1 may be a common mechanism by which cells sense nutrient status and modulate inflammatory signaling networks in accordance with organismal energy availability.

15.
J Biol Chem ; 288(22): 16167-76, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23595987

ABSTRACT

cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) regulates transcription of gluconeogenic genes by specifying targets for the transcription factor CREB in response to glucagon. We used an antisense oligonucleotide directed against CRTC2 in both normal rodents and in rodent models of increased gluconeogenesis to better understand the role of CRTC2 in metabolic disease. In the context of severe hyperglycemia and elevated hepatic glucose production, CTRC2 knockdown (KD) improved glucose homeostasis by reducing endogenous glucose production. Interestingly, despite the known role of CRTC2 in coordinating gluconeogenic gene expression, CRTC2 KD in a rodent model of type 2 diabetes resulted in surprisingly little alteration of glucose production. However, CRTC2 KD animals had elevated circulating concentrations of glucagon and a ∼80% reduction in glucagon clearance. When this phenomenon was prevented with somatostatin or a glucagon-neutralizing antibody, endogenous glucose production was reduced by CRTC2 KD. Additionally, CRTC2 inhibition resulted in reduced expression of several glucagon-induced pyridoxal 5'-phosphate-dependent enzymes that convert amino acids to gluconeogenic intermediates, suggesting that it may control substrate availability as well as gluconeogenic gene expression. CRTC2 is an important regulator of gluconeogenesis with tremendous impact in models of elevated hepatic glucose production. Surprisingly, it is also part of a previously unidentified negative feedback loop that degrades glucagon and regulates amino acid metabolism to coordinately control glucose homeostasis in vivo.


Subject(s)
Amino Acids/metabolism , Glucagon/metabolism , Glucose/metabolism , Homeostasis , Liver/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Amino Acids/genetics , Animals , Antibodies, Neutralizing/pharmacology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Gene Knockdown Techniques , Glucagon/antagonists & inhibitors , Glucagon/genetics , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Glucose/genetics , Liver/pathology , Mice , Pyridoxal Phosphate/genetics , Pyridoxal Phosphate/metabolism , Rats , Trans-Activators/genetics , Transcription Factors/genetics
16.
Proc Natl Acad Sci U S A ; 110(12): 4810-5, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23487794

ABSTRACT

Caspase-1 is a cysteine protease that can be activated by both endogenous and exogenous inflammatory stimuli and has been shown to have important functions in processes as diverse as proteolytic activation of cytokines, cell death, and membrane repair. Caspase-1-dependent production of the inflammatory cytokines IL-1 and IL-18 has also been implicated in the regulation of appetite, body weight, glucose homeostasis, and lipid metabolism. Consistent with the emerging views of caspase-1 in metabolic regulation, we find that caspase-1-deficient mice have dramatically accelerated triglyceride clearance, without alteration in lipid production or absorption, and resultant decrease in steady-state circulating triglyceride and fatty acid levels. Surprisingly, this effect is independent of IL-1-family signaling, supporting the concept that caspase-1 influences lipid metabolism through multiple mechanisms, not limited to cytokines.


Subject(s)
Caspase 1/metabolism , Fatty Acids/metabolism , Lipid Metabolism/physiology , Triglycerides/metabolism , Animals , Caspase 1/genetics , Fatty Acids/genetics , Interleukin-1/genetics , Interleukin-1/metabolism , Mice , Mice, Knockout , Triglycerides/genetics
17.
Diabetes ; 60(12): 3235-45, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22110092

ABSTRACT

OBJECTIVE: Macrophage recruitment to adipose tissue is a reproducible feature of obesity. However, the events that result in chemokine production and macrophage recruitment to adipose tissue during states of energetic excess are not clear. Sirtuin 1 (SirT1) is an essential nutrient-sensing histone deacetylase, which is increased by caloric restriction and reduced by overfeeding. We discovered that SirT1 depletion causes anorexia by stimulating production of inflammatory factors in white adipose tissue and thus posit that decreases in SirT1 link overnutrition and adipose tissue inflammation. RESEARCH DESIGN AND METHODS: We used antisense oligonucleotides to reduce SirT1 to levels similar to those seen during overnutrition and studied SirT1-overexpressing transgenic mice and fat-specific SirT1 knockout animals. Finally, we analyzed subcutaneous adipose tissue biopsies from two independent cohorts of human subjects. RESULTS: We found that inducible or genetic reduction of SirT1 in vivo causes macrophage recruitment to adipose tissue, whereas overexpression of SirT1 prevents adipose tissue macrophage accumulation caused by chronic high-fat feeding. We also found that SirT1 expression in human subcutaneous fat is inversely related to adipose tissue macrophage infiltration. CONCLUSIONS: Reduction of adipose tissue SirT1 expression, which leads to histone hyperacetylation and ectopic inflammatory gene expression, is identified as a key regulatory component of macrophage influx into adipose tissue during overnutrition in rodents and humans. Our results suggest that SirT1 regulates adipose tissue inflammation by controlling the gain of proinflammatory transcription in response to inducers such as fatty acids, hypoxia, and endoplasmic reticulum stress.


Subject(s)
Adipose Tissue/immunology , Adipose Tissue/metabolism , Inflammation/immunology , Inflammation/metabolism , Sirtuin 1/immunology , Sirtuin 1/metabolism , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Animals , Body Mass Index , Dietary Fats/adverse effects , Flow Cytometry , Humans , In Vitro Techniques , Inflammation/chemically induced , Inflammation/genetics , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics , Tumor Necrosis Factor-alpha/metabolism , Weight Loss/genetics , Weight Loss/physiology
18.
PLoS One ; 6(9): e25478, 2011.
Article in English | MEDLINE | ID: mdl-21980475

ABSTRACT

Invariant natural killer T cells (iNKTs) are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.


Subject(s)
Antigens, CD1d/metabolism , Animals , Antigens, CD1d/genetics , Body Weight , Chemokine CXCL16 , Chemokine CXCL6/genetics , Choline/metabolism , Diet, High-Fat/adverse effects , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression Regulation , Glucose Intolerance , Humans , Insulin/metabolism , Liver/metabolism , Male , Mice , Natural Killer T-Cells/metabolism , Obesity/etiology , Obesity/metabolism , Phenotype
19.
BMC Infect Dis ; 6: 161, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17096840

ABSTRACT

BACKGROUND: African malaria vectors bite predominantly indoors at night so sleeping under an Insecticide-Treated Net (ITN) can greatly reduce malaria risk. Behavioural adaptation by mosquitoes to increasing ITN coverage could allow vector mosquitoes to bite outside of peak sleeping hours and undermine efficacy of this key malaria prevention measure. METHODS: High coverage with largely untreated nets has been achieved in the Kilombero Valley, southern Tanzania through social marketing programmes. Direct surveys of nightly biting activity by An. gambiae Giles were conducted in the area before (1997) and after (2004) implementation of ITN promotion. A novel analytical model was applied to estimate the effective protection provided by an ITN, based on published experimental hut trials combined with questionnaire surveys of human sleeping behaviour and recorded mosquito biting patterns. RESULTS: An. gambiae was predominantly endophagic and nocturnal in both surveys: Approximately 90% and 80% of exposure occurred indoors and during peak sleeping hours, respectively. ITNs consistently conferred >70% protection against exposure to malaria transmission for users relative to non-users. CONCLUSION: As ITN coverage increases, behavioural adaptation by mosquitoes remains a future possibility. The approach described allows comparison of mosquito biting patterns and ITN efficacy at multiple study sites and times. Initial results indicate ITNs remain highly effective and should remain a top-priority intervention. Combined with recently developed transmission models, this approach allows rapid, informative and cost-effective preliminary comparison of diverse control strategies in terms of protection against exposure before more costly and intensive clinical trials.


Subject(s)
Bedding and Linens , Insecticides , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Rural Health , Animals , Clinical Trials as Topic , Culicidae , Humans , Insect Bites and Stings/epidemiology , Insect Bites and Stings/prevention & control , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...