Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecohealth ; 20(3): 249-262, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37985537

ABSTRACT

West Nile virus (WNV) is a mosquito-borne pathogen associated with uncommon but severe neurological complications in humans, especially among the elderly and immune-compromised. In Northeastern North America, the Culex pipiens/restuans complex and Aedes vexans are the two principal vector mosquito species/species groups of WNV. Using a 10-year surveillance dataset of WNV vector captures at 118 sites across an area of 40,000 km2 in Eastern Ontario, Canada, the ecological niches of Cx. pipiens/restuans and Aedes vexans were modeled by random forest analysis. Spatiotemporal clusters of WNV-positive mosquito pools were identified using Kulldorf's spatial scan statistic. The study region encompasses land cover types and climate representative of highly populated Southeastern Canada. We found highest vector habitat suitability in the eastern half of the study area, where temperatures are generally warmer (variable importance > 0.40) and residential and agricultural cropland cover is more prominent (variable importance > 0.25). We found spatiotemporal clusters of high WNV infection rates around the city of Ottawa in both mosquito vector species. These results support the previous literature in the same region and elsewhere suggesting areas surrounding highly populated areas are also high-risk areas for vector-borne zoonoses such as the WNV.


Subject(s)
Aedes , Culex , West Nile Fever , West Nile virus , Animals , Humans , Aged , Ontario/epidemiology , West Nile Fever/epidemiology , Ecosystem
2.
BMC Public Health ; 23(1): 924, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217931

ABSTRACT

BACKGROUND: Climate change is increasing the dispersion of mosquitoes and the spread of viruses of which some mosquitoes are the main vectors. In Quebec, the surveillance and management of endemic mosquito-borne diseases, such as West Nile virus or Eastern equine encephalitis, could be improved by mapping the areas of risk supporting vector populations. However, there is currently no active tool tailored to Quebec that can predict mosquito population abundances, and we propose, with this work, to help fill this gap. METHODS: Four species of mosquitos were studied in this project for the period from 2003 to 2016 for the southern part of the province of Quebec: Aedes vexans (VEX), Coquillettidia perturbans (CQP), Culex pipiens-restuans group (CPR) and Ochlerotatus stimulans group (SMG) species. We used a negative binomial regression approach, including a spatial component, to model the abundances of each species or species group as a function of meteorological and land-cover variables. We tested several sets of variables combination, regional and local scale variables for landcover and different lag period for the day of capture for weather variables, to finally select one best model for each species. RESULTS: Models selected showed the importance of the spatial component, independently of the environmental variables, at the larger spatial scale. In these models, the most important land-cover predictors that favored CQP and VEX were 'forest', and 'agriculture' (for VEX only). Land-cover 'urban' had negative impact on SMG and CQP. The weather conditions on the trapping day and previous weather conditions summarized over 30 or 90 days were preferred over a shorter period of seven days, suggesting current and long-term previous weather conditions effects on mosquito abundance. CONCLUSIONS: The strength of the spatial component highlights the difficulties in modelling the abundance of mosquito species and the model selection shows the importance of selecting the right environmental predictors, especially when choosing the temporal and spatial scale of these variables. Climate and landscape variables were important for each species or species group, suggesting it is possible to consider their use in predicting long-term spatial variationsin the abundance of mosquitoes potentially harmful to public health in southern Quebec.


Subject(s)
Aedes , Culex , Culicidae , West Nile virus , Animals , Humans , Quebec/epidemiology , Mosquito Vectors
3.
Thorax ; 78(5): 459-466, 2023 05.
Article in English | MEDLINE | ID: mdl-35361687

ABSTRACT

BACKGROUND: Ambient air pollution is thought to contribute to increased risk of COVID-19, but the evidence is controversial. OBJECTIVE: To evaluate the associations between short-term variations in outdoor concentrations of ambient air pollution and COVID-19 emergency department (ED) visits. METHODS: We conducted a case-crossover study of 78 255 COVID-19 ED visits in Alberta and Ontario, Canada between 1 March 2020 and 31 March 2021. Daily air pollution data (ie, fine particulate matter with diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone were assigned to individual case of COVID-19 in 10 km × 10 km grid resolution. Conditional logistic regression was used to estimate associations between air pollution and ED visits for COVID-19. RESULTS: Cumulative ambient exposure over 0-3 days to PM2.5 (OR 1.010; 95% CI 1.004 to 1.015, per 6.2 µg/m3) and NO2 (OR 1.021; 95% CI 1.015 to 1.028, per 7.7 ppb) concentrations were associated with ED visits for COVID-19. We found that the association between PM2.5 and COVID-19 ED visits was stronger among those hospitalised following an ED visit, as a measure of disease severity, (OR 1.023; 95% CI 1.015 to 1.031) compared with those not hospitalised (OR 0.992; 95% CI 0.980 to 1.004) (p value for effect modification=0.04). CONCLUSIONS: We found associations between short-term exposure to ambient air pollutants and COVID-19 ED visits. Exposure to air pollution may also lead to more severe COVID-19 disease.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Cross-Over Studies , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , COVID-19/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Ontario/epidemiology , Emergency Service, Hospital , Environmental Exposure/adverse effects , Environmental Exposure/analysis
4.
Ticks Tick Borne Dis ; 13(6): 102040, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36137391

ABSTRACT

Public health management of Lyme disease (LD) is a dynamic challenge in Canada. Climate warming is driving the northward expansion of suitable habitat for the tick vector, Ixodes scapularis. Information about tick population establishment is used to inform the risk of LD but is challenged by sampling biases from surveillance data. Misclassifying areas as having no established tick population underestimates the LD risk classification. We used a logistic regression model at the municipal level to predict the probability of I. scapularis population establishment based on passive tick surveillance data during the period of 2010-2017 in southern Quebec. We tested for the effect of abiotic and biotic factors hypothesized to influence tick biology and ecology. Additional variables controlled for sampling biases in the passive surveillance data. In our final selected model, tick population establishment was positively associated with annual cumulative degree-days > 0°C, precipitation and deer density, and negatively associated with coniferous and mixed forest types. Sampling biases from passive tick surveillance were controlled for using municipal population size and public health instructions on tick submissions. The model performed well as indicated by an area under the curve (AUC) of 0.92, sensitivity of 86% and specificity of 81%. Our model enables prediction of I. scapularis population establishment in areas which lack data from passive tick surveillance and may improve the sensitivity of LD risk categorization in these areas. A more sensitive system of LD risk classification is important for increasing awareness and use of protective measures employed against ticks, and decreasing the morbidity associated with LD.

5.
Pathogens ; 10(8)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34451462

ABSTRACT

Current climatic conditions limit the distribution of Aedes (Stegomyia) albopictus (Skuse, Diptera: Culicidae) in the north, but predictive climate models suggest this species could establish itself in southern Canada by 2040. A vector of chikungunya, dengue, yellow fever, Zika and West Nile viruses, the Ae. Albopictus has been detected in Windsor, Ontario since 2016. Given the potential public health implications, and knowing that Aedes spp. can easily be introduced by ground transportation, this study aimed to determine if specimens could be detected, using an adequate methodology, in southern Québec. Mosquitoes were sampled in 2016 and 2017 along the main roads connecting Canada and the U.S., using Biogent traps (Sentinel-2, Gravide Aedes traps) and ovitraps. Overall, 24 mosquito spp. were captured, excluding Ae. Albopictus, but detecting one Aedes (Stegomyia) aegypti (Skuse) specimen (laid eggs). The most frequent species among captured adults were Ochlerotatus triseriatus, Culex pipiens complex, and Ochlerotatus japonicus (31.0%, 26.0%, and 17.3%, respectively). The present study adds to the increasing number of studies reporting on the range expansions of these mosquito species, and suggests that ongoing monitoring, using multiple capture techniques targeting a wide range of species, may provide useful information to public health with respect to the growing risk of emerging mosquito-borne diseases in southern Canada.

6.
Can J Public Health ; 111(2): 229-238, 2020 04.
Article in English | MEDLINE | ID: mdl-32020540

ABSTRACT

OBJECTIVES: This study aimed at (1) describing the local risk of West Nile virus (WNV) infection in humans based on previous case reports and (2) investigating the spatial clustering of cases in the five most affected administrative regions of Quebec, Canada, for the 2011-2016 period. METHODS: Human WNV cases declared to the Ministry of Health and Social Services of Quebec (Ministère de la santé et des services sociaux, MSSS) were retrieved. Incidence risk by age and sex was calculated for the study period. The yearly and monthly occurrence of cases in geographical units (GUs) was described and the probability of observing cases in a GU with cases reported in the previous year or month was assessed. Moran's I was used to assess global clustering across the study area. Spatial clusters were identified by the Kulldorff scan statistic. RESULTS: A total of 261 WNV cases were declared to the MSSS between 2011 and 2016 in the study area. Overall, a low percentage of GU with cases reported had additional cases reported over the next month or year. Global spatial clustering was weak but statistically significant (p < 0.05) for 2012 and 2015. For these two years, spatial clusters of high-risk GUs were identified. CONCLUSION: Results underline the challenge of predicting the distribution of WNV incidence risk in Quebec based on previous occurrence of human cases. Ongoing research with high spatial resolution entomological data is still necessary to understand the spatial distribution of risk at a local scale.


Subject(s)
Disease Outbreaks , Risk Assessment , West Nile Fever/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Forecasting , Humans , Incidence , Male , Middle Aged , Quebec/epidemiology , Young Adult
7.
PLoS One ; 14(2): e0212637, 2019.
Article in English | MEDLINE | ID: mdl-30779789

ABSTRACT

Lyme disease, the most commonly reported vector-borne disease in North America, is caused by the spirochete Borrelia burgdorferi sensu stricto, which is transmitted by Ixodes scapularis in eastern Canada and Ixodes pacificus in western Canada. Recently, the northward range expansion of I. scapularis ticks, in south-eastern Canada, has resulted in a dramatic increase in the incidence of human Lyme disease. Detecting emerging areas of Lyme disease risk allows public health to target disease prevention efforts. We analysed passive tick surveillance data from Ontario and Manitoba to i) assess the relationship between the total numbers of I. scapularis submissions in passive surveillance from humans, and the number of human Lyme disease cases, and ii) develop province-specific acarological indicators of risk that can be used to generate surveillance-based risk maps. We also assessed associations between numbers of nymphal I. scapularis tick submissions only and Lyme disease case incidence. Using General Estimating Equation regression, the relationship between I. scapularis submissions (total numbers and numbers of nymphs only) in each census sub-division (CSD) and the number of reported Lyme disease cases was positively correlated and highly significant in the two provinces (P ≤ 0.001). The numbers of I. scapularis submissions over five years discriminated CSDs with ≥ 3 Lyme disease cases from those with < 3 cases with high accuracy when using total numbers of tick submission (Receiver Operating Characteristics area under the curve [AUC] = 0.89) and moderate accuracy (AUC = 0.78) when using nymphal tick submissions only. In Ontario the optimal cut-off point was a total 12 tick submissions from a CSD over five years (Sensitivity = 0.82, Specificity = 0.84), while in Manitoba the cut-off point was five ticks (Sensitivity = 0.71, Specificity = 0.79) suggesting regional variability of the risk of acquiring Lyme disease from an I. scapularis bite. The performances of the acarological indicators developed in this study for Ontario and Manitoba support the ability of passive tick surveillance to provide an early signal of the existence Lyme disease risk areas in regions where ticks and the pathogens they transmit are expanding their range.


Subject(s)
Arachnid Vectors/microbiology , Borrelia burgdorferi/isolation & purification , Ixodes/microbiology , Lyme Disease/epidemiology , Animals , Female , Humans , Lyme Disease/diagnosis , Male , Manitoba/epidemiology , Ontario/epidemiology , Risk Assessment
8.
J Water Health ; 16(4): 516-529, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30067235

ABSTRACT

Campylobacter is an important cause of gastrointestinal illness and exposure to recreational water is one potential source of infection. The objective of this study was to investigate the presence and concentrations of Campylobacter, and determine the influence of agricultural activities and precipitation on their presence, at lake beaches used for water recreation in southern Quebec, Canada. A total of 413 water samples were collected from June to August, from 22 beaches, between 2011 and 2013. The overall proportion of positive water samples was estimated to be 33.9% (95% CI: 27.7, 40.1) for C. jejuni and 49.7% (95% CI: 41.8, 57.6) for Campylobacter spp. The concentrations of both thermotolerant Campylobacter spp. and C. jejuni ranged from 20 to 900 bacteria/L of water. Logistic regressions showed that the presence of C. jejuni and Campylobacter spp. was significantly associated with the year and season. Other significant predictors of C. jejuni, but not Campylobacter spp., included the presence of precipitation the day before sampling and the presence of ruminant farms within a 5 km radius of the beach. The present study provides insights into the risk of Campylobacter presence in recreational lake water for better understanding public health risks.


Subject(s)
Bathing Beaches , Campylobacter/isolation & purification , Farms , Lakes/microbiology , Rain , Ruminants/microbiology , Animals , Chickens/microbiology , Humans , Quebec , Risk Factors , Turkeys/microbiology , Water Microbiology
9.
Ticks Tick Borne Dis ; 9(6): 1407-1415, 2018 09.
Article in English | MEDLINE | ID: mdl-30006200

ABSTRACT

In North America, different strains of the Lyme disease-causing bacterium Borrelia burgdorferi sensu stricto cluster into phylogenetic groups that are associated with different levels of pathogenicity and, for some, specific rodent reservoir hosts. Here we explore whether landscape connectivity, by impacting host dispersal, influences B. burgdorferi s.s. spread patterns. This question is central to modelling spatial patterns of the spread of Lyme disease risk in the zone of northward range-expansion of B. burgdorferi s.s. in southeastern Canada where the study was conducted. We used multi-locus sequence typing (MLST) to characterise B. burgdorferi s.s. in positive ticks collected at 13 sites in southern Quebec, Canada during the early stages of B. burgdorferi s.s. invasion. We used mixed effects logistic regression to investigate whether landscape connectivity (probability of connectivity; PC) affected the probability that samples collected at different sites were of the same strain (MLST sequence type: ST). PC was calculated from a habitat map based on high spatial resolution (15 m) Landsat 8 imagery to identify woodland habitat that are preferred by rodent hosts of B. burgdorferi s.s. There was a significant positive association between the likelihood that two samples were of the same ST and PC, when PC values were grouped into three categories of low, medium and high. When analysing data for individual STs, samples at different sites were significantly more likely to be the same when PC was higher for the rodent-associated ST1. These findings support the hypothesis that dispersion trajectories of B. burgdorferi s.s. in general, and some rodent-associated strains in particular, are at least partly determined by landscape connectivity. This may suggest that dispersion of B. burgdorferi s.s. is more common by terrestrial mammal hosts (which would likely disperse according to landscape connectivity) than by birds, the dispersal of which is likely less constrained by landscape. This study suggests that accounting for landscape connectivity may improve model-based predictions of spatial spread patterns of B. burgdorferi s.s. The findings are consistent with possible past dispersal patterns of B. burgdorferi s.s. as determined by phylogeographic studies.


Subject(s)
Borrelia burgdorferi/isolation & purification , Deer , Environment , Ixodes/microbiology , Ixodes/physiology , Rodentia , Tick Infestations/veterinary , Animal Distribution , Animals , Multilocus Sequence Typing , Quebec/epidemiology , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Tick Infestations/epidemiology , Tick Infestations/parasitology
10.
Water Sci Technol ; 67(7): 1503-11, 2013.
Article in English | MEDLINE | ID: mdl-23552238

ABSTRACT

Diverse fecal and nonfecal bacterial contamination and nutrient sources (e.g. agriculture, human activities and wildlife) represent a considerable non-point source load entering natural recreational waters which may adversely affect water quality. Monitoring of natural recreational water microbial quality is most often based mainly on testing a set of microbiological indicators. The cost and labour involved in testing numerous water samples may be significant when a large number of sites must be monitored repetitively over time. In addition to water testing, ongoing monitoring of key environmental factors known to influence microbial contamination may be carried out as an additional component. Monitoring of environmental factors can now be performed using remote sensing technology which represents an increasingly recognized source of rigorous and recurrent data, especially when monitoring over a large or difficult to access territory is needed. To determine whether this technology could be useful in the context of recreational water monitoring, we evaluated a set of agroenvironmental determinants associated with fecal contamination of recreational waters through a multivariable logistic regression model built with data extracted from satellite imagery. We found that variables describing the proportions of land with agricultural and impervious surfaces, as derived from remote sensing observations, were statistically associated (odds ratio, OR = 11 and 5.2, respectively) with a higher level of fecal coliforms in lake waters in the southwestern region of Quebec, Canada. From a technical perspective, remote sensing may provide important added-value in the monitoring of microbial risk from recreational waters and further applications of this technology should be investigated to support public health risk assessments and environmental monitoring programs relating to water quality.


Subject(s)
Bathing Beaches/standards , Environmental Monitoring/methods , Fresh Water/analysis , Remote Sensing Technology , Water Quality , Feces , Logistic Models , Quebec
SELECTION OF CITATIONS
SEARCH DETAIL
...