Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39162918

ABSTRACT

During the space travel mission, astronauts' physiological and psychological behavior will alter, and they will start consuming terrestrial drug products. However, factors such as microgravity, radiation exposure, temperature, humidity, strong vibrations, space debris, and other issues encountered, the drug product undergo instability This instability combined with physiological changes will affect the shelf life and diminish the pharmacokinetic and pharmacodynamic profile of the drug product. Consequently, the physicochemical changes will produce a toxic degradation product and a lesser potency dosage form which may result in reduced or no therapeutic action, so the astronaut consumes an additional dose to remain healthy. On long-duration missions like Mars, the drug product cannot be replaced, and the astronaut may relay on the available medications. Sometimes, radiation-induced impurities in the drug product will cause severe problems for the astronaut. So, this review article highlights the current state of various space-related factors affecting the drug product and provides a comprehensive summary of the physiological changes which primarly focus on absorption, distribution, metabolism, and excretion (ADME). Along with that, we insist some of the strategies like novel formulations, space medicine manufacturing from plants, and 3D printed medicine for astronauts in longer-duration missions. Such developments are anticipated to significantly contribute to new developments with applications in both human space exploration and on terrestrial healthcare.

2.
Curr Pharm Des ; 28(26): 2150-2160, 2022.
Article in English | MEDLINE | ID: mdl-35619317

ABSTRACT

Artificial intelligence is the leading branch of technology and innovation. The utility of artificial intelligence in the field of medicine is also remarkable. From drug discovery and development to introducing products to the market, artificial intelligence can play its role. As people age, they are more prone to be affected by eye diseases around the globe. Early diagnosis and detection help minimize the risk of vision loss and provide a quality life. With the help of artificial intelligence, the workload of humans and manmade errors can be reduced to an extent. The need for artificial intelligence in the area of ophthalmic is also significant. In this review, we elaborated on the use of artificial intelligence in the field of pharmaceutical product development, mainly with its application in ophthalmic care. AI in the future has a high potential to increase the success rate in the drug discovery phase has already been established. The application of artificial intelligence for drug development, diagnosis, and treatment is also reported with the scientific evidence in this paper.


Subject(s)
Artificial Intelligence , Eye Diseases , Drug Development , Drug Discovery , Forecasting , Humans
SELECTION OF CITATIONS
SEARCH DETAIL