Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Chem Neurosci ; 4(3): 393-407, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23509976

ABSTRACT

In human beings, Parkinson's disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases.


Subject(s)
Curcumin/metabolism , Curcumin/pharmacology , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Cell Line, Tumor , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Binding/physiology , alpha-Synuclein/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL