Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Biotechnol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740992

ABSTRACT

Cas9 can cleave DNA in both blunt and staggered configurations, resulting in distinct editing outcomes, but what dictates the type of Cas9 incisions is largely unknown. In this study, we developed BreakTag, a versatile method for profiling Cas9-induced DNA double-strand breaks (DSBs) and identifying the determinants of Cas9 incisions. Overall, we assessed cleavage by SpCas9 at more than 150,000 endogenous on-target and off-target sites targeted by approximately 3,500 single guide RNAs. We found that approximately 35% of SpCas9 DSBs are staggered, and the type of incision is influenced by DNA:gRNA complementarity and the use of engineered Cas9 variants. A machine learning model shows that Cas9 incision is dependent on the protospacer sequence and that human genetic variation impacts the configuration of Cas9 cuts and the DSB repair outcome. Matched datasets of Cas9 and engineered variant incisions with repair outcomes show that Cas9-mediated staggered breaks are linked with precise, templated and predictable single-nucleotide insertions, demonstrating that a scission-based gRNA design can be used to correct clinically relevant pathogenic single-nucleotide deletions.

2.
Blood Cancer Discov ; 4(4): 318-335, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37067914

ABSTRACT

The reprogramming of human acute myeloid leukemia (AML) cells into induced pluripotent stem cell (iPSC) lines could provide new faithful genetic models of AML, but is currently hindered by low success rates and uncertainty about whether iPSC-derived cells resemble their primary counterparts. Here we developed a reprogramming method tailored to cancer cells, with which we generated iPSCs from 15 patients representing all major genetic groups of AML. These AML-iPSCs retain genetic fidelity and produce transplantable hematopoietic cells with hallmark phenotypic leukemic features. Critically, single-cell transcriptomics reveal that, upon xenotransplantation, iPSC-derived leukemias faithfully mimic the primary patient-matched xenografts. Transplantation of iPSC-derived leukemias capturing a clone and subclone from the same patient allowed us to isolate the contribution of a FLT3-ITD mutation to the AML phenotype. The results and resources reported here can transform basic and preclinical cancer research of AML and other human cancers. SIGNIFICANCE: We report the generation of patient-derived iPSC models of all major genetic groups of human AML. These exhibit phenotypic hallmarks of AML in vitro and in vivo, inform the clonal hierarchy and clonal dynamics of human AML, and exhibit striking similarity to patient-matched primary leukemias upon xenotransplantation. See related commentary by Doulatov, p. 252. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Humans , Induced Pluripotent Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Phenotype , Gene Expression Profiling , Genetic Variation/genetics
3.
Blood Adv ; 6(10): 2992-3005, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35042235

ABSTRACT

SF3B1K700E is the most frequent mutation in myelodysplastic syndrome (MDS), but the mechanisms by which it drives MDS pathogenesis remain unclear. We derived a panel of 18 genetically matched SF3B1K700E- and SF3B1WT-induced pluripotent stem cell (iPSC) lines from patients with MDS with ring sideroblasts (MDS-RS) harboring isolated SF3B1K700E mutations and performed RNA and ATAC sequencing in purified CD34+/CD45+ hematopoietic stem/progenitor cells (HSPCs) derived from them. We developed a novel computational framework integrating splicing with transcript usage and gene expression analyses and derived a SF3B1K700E splicing signature consisting of 59 splicing events linked to 34 genes, which associates with the SF3B1 mutational status of primary MDS patient cells. The chromatin landscape of SF3B1K700E HSPCs showed increased priming toward the megakaryocyte- erythroid lineage. Transcription factor motifs enriched in chromatin regions more accessible in SF3B1K700E cells included, unexpectedly, motifs of the TEA domain (TEAD) transcription factor family. TEAD expression and transcriptional activity were upregulated in SF3B1-mutant iPSC-HSPCs, in support of a Hippo pathway-independent role of TEAD as a potential novel transcriptional regulator of SF3B1K700E cells. This study provides a comprehensive characterization of the transcriptional and chromatin landscape of SF3B1K700E HSPCs and nominates novel mis-spliced genes and transcriptional programs with putative roles in MDS-RS disease biology.


Subject(s)
Induced Pluripotent Stem Cells , Myelodysplastic Syndromes , Chromatin/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Transcription Factors/metabolism
4.
Cancer Discov ; 12(3): 836-855, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34620690

ABSTRACT

Mutations in splicing factors (SF) are the predominant class of mutations in myelodysplastic syndrome (MDS), but convergent downstream disease drivers remain elusive. To identify common direct targets of missplicing by mutant U2AF1 and SRSF2, we performed RNA sequencing and enhanced version of the cross-linking and immunoprecipitation assay in human hematopoietic stem/progenitor cells derived from isogenic induced pluripotent stem cell (iPSC) models. Integrative analyses of alternative splicing and differential binding converged on a long isoform of GNAS (GNAS-L), promoted by both mutant factors. MDS population genetics, functional and biochemical analyses support that GNAS-L is a driver of MDS and encodes a hyperactive long form of the stimulatory G protein alpha subunit, Gαs-L, that activates ERK/MAPK signaling. SF-mutant MDS cells have activated ERK signaling and consequently are sensitive to MEK inhibitors. Our findings highlight an unexpected and unifying mechanism by which SRSF2 and U2AF1 mutations drive oncogenesis with potential therapeutic implications for MDS and other SF-mutant neoplasms. SIGNIFICANCE: SF mutations are disease-defining in MDS, but their critical effectors remain unknown. We discover the first direct target of convergent missplicing by mutant U2AF1 and SRSF2, a long GNAS isoform, which activates G protein and ERK/MAPK signaling, thereby driving MDS and rendering mutant cells sensitive to MEK inhibition. This article is highlighted in the In This Issue feature, p. 587.


Subject(s)
Myelodysplastic Syndromes , Neoplasms , Alternative Splicing , Chromogranins/genetics , Chromogranins/metabolism , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Myelodysplastic Syndromes/genetics , RNA/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism
5.
Blood ; 139(2): 205-216, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34359073

ABSTRACT

Acute myeloid leukemia (AML) is a clonal hematopoietic stem and progenitor cell malignancy characterized by poor clinical outcomes. Major histocompatibility complex class I polypeptide-related sequence A and B (MICA/B) are stress proteins expressed by cancer cells, and antibody-mediated inhibition of MICA/B shedding represents a novel approach to stimulate immunity against cancers. We found that the MICA/B antibody 7C6 potently inhibits the outgrowth of AML in 2 models in immunocompetent mice. Macrophages were essential for therapeutic efficacy, and 7C6 triggered antibody-dependent phagocytosis of AML cells. Furthermore, we found that romidepsin, a selective histone deacetylase inhibitor, increased MICB messenger RNA in AML cells and enabled subsequent stabilization of the translated protein by 7C6. This drug combination substantially increased surface MICA/B expression in a human AML line, pluripotent stem cell-derived AML blasts and leukemia stem cells, as well as primary cells from 3 untreated patients with AML. Human macrophages phagocytosed AML cells following treatment with 7C6 and romidepsin, and the combination therapy lowered leukemia burden in a humanized model of AML. Therefore, inhibition of MICA/B shedding promotes macrophage-driven immunity against AML via Fc receptor signaling and synergizes with an epigenetic regulator. These results provide the rationale for the clinical testing of this innovative immunotherapeutic approach for the treatment of AML.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Histocompatibility Antigens Class I/immunology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Macrophages/drug effects , Animals , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/pathology , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Phagocytosis/drug effects
6.
Sci Rep ; 11(1): 24432, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34952919

ABSTRACT

Despite the initial success of some drugs and vaccines targeting COVID-19, understanding the mechanism underlying SARS-CoV-2 disease pathogenesis remains crucial for the development of further approaches to treatment. Some patients with severe Covid-19 experience a cytokine storm and display evidence of inflammasome activation leading to increased levels of IL-1ß and IL-18; however, other reports have suggested reduced inflammatory responses to Sars-Cov-2. In this study we have examined the effects of the Sars-Cov-2 envelope (E) protein, a virulence factor in coronaviruses, on inflammasome activation and pulmonary inflammation. In cultured macrophages the E protein suppressed inflammasome priming and NLRP3 inflammasome activation. Similarly, in mice transfected with E protein and treated with poly(I:C) to simulate the effects of viral RNA, the E protein, in an NLRP3-dependent fashion, reduced expression of pro-IL-1ß, levels of IL-1ß and IL-18 in broncho-alveolar lavage fluid, and macrophage infiltration in the lung. To simulate the effects of more advanced infection, macrophages were treated with both LPS and poly(I:C). In this setting the E protein increased NLRP3 inflammasome activation in both murine and human macrophages. Thus, the Sars-Cov-2 E protein may initially suppress the host NLRP3 inflammasome response to viral RNA while potentially increasing NLRP3 inflammasome responses in the later stages of infection. Targeting the Sars-Cov-2 E protein especially in the early stages of infection may represent a novel approach to Covid-19 therapy.


Subject(s)
Coronavirus Envelope Proteins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/pathology , COVID-19/virology , Coronavirus Envelope Proteins/genetics , Down-Regulation/drug effects , Endoplasmic Reticulum Stress , Humans , Inflammasomes/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Poly I-C/pharmacology , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
7.
Nature ; 592(7853): 296-301, 2021 04.
Article in English | MEDLINE | ID: mdl-33731931

ABSTRACT

Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors1. Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2V617F (JAK2VF) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease1,2. Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1ß reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1ß or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.


Subject(s)
Atherosclerosis/pathology , Clonal Hematopoiesis , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Animals , Antibodies/immunology , Antibodies/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Bone Marrow/metabolism , Caspase 1/metabolism , Caspases, Initiator/metabolism , Disease Models, Animal , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1beta/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Phosphate-Binding Proteins/metabolism , Pyroptosis , RNA-Seq , Single-Cell Analysis
8.
Blood Adv ; 5(3): 687-699, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33560381

ABSTRACT

RUNX1 familial platelet disorder (RUNX1-FPD) is an autosomal dominant disorder caused by a monoallelic mutation of RUNX1, initially resulting in approximately half-normal RUNX1 activity. Clinical features include thrombocytopenia, platelet functional defects, and a predisposition to leukemia. RUNX1 is rapidly degraded through the ubiquitin-proteasome pathway. Moreover, it may autoregulate its expression. A predicted kinetic property of autoregulatory circuits is that transient perturbations of steady-state levels result in continued maintenance of expression at adjusted levels, even after inhibitors of degradation or inducers of transcription are withdrawn, suggesting that transient inhibition of RUNX1 degradation may have prolonged effects. We hypothesized that pharmacological inhibition of RUNX1 protein degradation could normalize RUNX1 protein levels, restore the number of platelets and their function, and potentially delay or prevent malignant transformation. In this study, we evaluated cell lines, induced pluripotent stem cells derived from patients with RUNX1-FPD, RUNX1-FPD primary bone marrow cells, and acute myeloid leukemia blood cells from patients with RUNX1 mutations. The results showed that, in some circumstances, transient expression of exogenous RUNX1 or inhibition of steps leading to RUNX1 ubiquitylation and proteasomal degradation restored RUNX1 levels, thereby advancing megakaryocytic differentiation in vitro. Thus, drugs retarding RUNX1 proteolytic degradation may represent a therapeutic avenue for treating bleeding complications and preventing leukemia in RUNX1-FPD.


Subject(s)
Blood Coagulation Disorders, Inherited , Blood Platelet Disorders , Leukemia, Myeloid, Acute , Blood Platelet Disorders/genetics , Blood Platelets , Core Binding Factor Alpha 2 Subunit/genetics , Humans
9.
Cell Stem Cell ; 28(6): 1074-1089.e7, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33571445

ABSTRACT

Human cancers arise through the sequential acquisition of somatic mutations that create successive clonal populations. Human cancer evolution models could help illuminate this process and inform therapeutic intervention at an early disease stage, but their creation has faced significant challenges. Here, we combined induced pluripotent stem cell (iPSC) and CRISPR-Cas9 technologies to develop a model of the clonal evolution of acute myeloid leukemia (AML). Through the stepwise introduction of three driver mutations, we generated iPSC lines that, upon hematopoietic differentiation, capture distinct premalignant stages, including clonal hematopoiesis (CH) and myelodysplastic syndrome (MDS), culminating in a transplantable leukemia, and recapitulate transcriptional and chromatin accessibility signatures of primary human MDS and AML. By mapping dynamic changes in transcriptomes and chromatin landscapes, we characterize transcriptional programs driving specific transitions between disease stages. We identify cell-autonomous dysregulation of inflammatory signaling as an early and persistent event in leukemogenesis and a promising early therapeutic target.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Clonal Evolution/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Humans , Leukemia, Myeloid, Acute/genetics , Mutation
10.
Methods Mol Biol ; 2185: 411-422, 2021.
Article in English | MEDLINE | ID: mdl-33165864

ABSTRACT

Patient-derived induced pluripotent stem cells (iPSCs) have recently provided a new way to model acute myeloid leukemia (AML) and other myeloid malignancies. Here, we describe methods for the generation of patient-derived iPSCs from leukemia cells and for their subsequent directed in vitro differentiation into hematopoietic cells that recapitulate features of leukemia stem cells (LSCs) and leukemic blasts.


Subject(s)
Cellular Reprogramming , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology
11.
Exp Hematol ; 87: 25-32, 2020 07.
Article in English | MEDLINE | ID: mdl-32544417

ABSTRACT

Recurrent chromosomal deletions spanning several megabases are often found in hematological malignancies. The ability to engineer deletions in model systems to functionally study their effects on the phenotype would enable, first, determination of whether a given deletion is pathogenic or neutral and, second, identification of the critical genes. Incomplete synteny makes modeling of deletions of megabase scale challenging or impossible in the mouse or other model organisms. Furthermore, despite the breakthroughs in targeted nuclease technologies in recent years, engineering of megabase-scale deletions remains challenging and has not been achieved in normal diploid human cells. Large deletions of the long arm of chromosome 7 (chr7q) occur frequently in myelodysplastic syndrome (MDS) and are associated with poor prognosis. We previously found that we can model chr7q deletions in human induced pluripotent stem cells (iPSCs) using a modified Cre-loxP strategy. However, this strategy did not afford control over the length and boundaries of the engineered deletions, which were initiated through random chromosome breaks. Here we developed strategies enabling the generation of defined and precise chromosomal deletions of up to 22 Mb, using two different strategies: "classic" Cre-loxP recombination and CRISPR/Cas9-mediated DNA cleavage. As proof of principle, we illustrate that phenotypic characterization of the hematopoiesis derived from these iPSCs upon in vitro differentiation allows further definition of the critical region of chr7q whose hemizygosity impairs hematopoietic differentiation potential. The strategies we present here can be broadly applicable to engineering of diverse chromosomal deletions in human cells.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 7 , Induced Pluripotent Stem Cells/metabolism , Animals , Chromosomes, Human, Pair 7/genetics , Chromosomes, Human, Pair 7/metabolism , Humans , Integrases/genetics , Integrases/metabolism , Mice
12.
Cell Rep ; 31(9): 107688, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32492433

ABSTRACT

Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Leukemia, Myeloid, Acute/pathology , Animals , Cell Differentiation , Cell Line , Chromatin/metabolism , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation , Genetic Heterogeneity , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Markov Chains , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype , RNA Interference , RNA, Small Interfering/metabolism , RNA-Seq , Single-Cell Analysis
14.
Cancer Cell ; 36(2): 194-209.e9, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31408619

ABSTRACT

Cancer-associated mutations in genes encoding RNA splicing factors (SFs) commonly occur in leukemias, as well as in a variety of solid tumors, and confer dependence on wild-type splicing. These observations have led to clinical efforts to directly inhibit the spliceosome in patients with refractory leukemias. Here, we identify that inhibiting symmetric or asymmetric dimethylation of arginine, mediated by PRMT5 and type I protein arginine methyltransferases (PRMTs), respectively, reduces splicing fidelity and results in preferential killing of SF-mutant leukemias over wild-type counterparts. These data identify genetic subsets of cancer most likely to respond to PRMT inhibition, synergistic effects of combined PRMT5 and type I PRMT inhibition, and a mechanistic basis for the therapeutic efficacy of PRMT inhibition in cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Ethylenediamines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Pyrroles/pharmacology , RNA Splicing/drug effects , RNA, Neoplasm/metabolism , Animals , Antineoplastic Agents/pharmacokinetics , Catalysis , Enzyme Inhibitors/pharmacokinetics , Ethylenediamines/pharmacokinetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Pyrroles/pharmacokinetics , RNA, Neoplasm/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , THP-1 Cells , Tumor Cells, Cultured , U937 Cells , Xenograft Model Antitumor Assays
15.
Stem Cell Reports ; 10(5): 1610-1624, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29681544

ABSTRACT

Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs-with none, one, or both genetic lesions-we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , Induced Pluripotent Stem Cells/pathology , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Alternative Splicing/genetics , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Neoplasms/pathology , Phenotype , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Small Molecule Libraries/pharmacology
16.
Cell Stem Cell ; 20(3): 315-328.e7, 2017 03 02.
Article in English | MEDLINE | ID: mdl-28215825

ABSTRACT

Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions.


Subject(s)
Cell Transformation, Neoplastic/pathology , Disease Progression , Induced Pluripotent Stem Cells/cytology , Leukemia, Myeloid, Acute/pathology , Animals , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/drug effects , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , DNA Mutational Analysis , Gene Expression Regulation, Leukemic/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Mice , Models, Biological , Myelodysplastic Syndromes/pathology , Neoplasm Transplantation , Phenotype , Transcriptome/drug effects , Transcriptome/genetics
17.
Mol Ther Nucleic Acids ; 5(11): e394, 2016 11 29.
Article in English | MEDLINE | ID: mdl-27898090

ABSTRACT

Transgenesis of human pluripotent stem cells (hPSCs) can enable and empower a variety of studies in stem cell research, including lineage tracing and functional genetics studies. While in recent years much progress has been made in the development of tools for gene targeting, little attention has been given to the identification of sites in the human genome where transgenes can be inserted and reliably expressed. In order to find human genomic sites capable of supporting long-term and high-level transgene expression in hPSCs, we performed a lentiviral screen in human induced pluripotent stem cells (iPSCs). We isolated 40 iPSC clones each harboring a single vector copy and characterized the level of transgene expression afforded by each unique integration site. We selected one clone, LiPS-A3 with an integration site in chromosome 15 maintaining robust expression without silencing and demonstrate that different transgenes can be inserted therein rapidly and efficiently through recombinase-mediated cassette exchange (RMCE). The LiPS-A3 line can greatly facilitate the insertion of reporter and other genes in hPSCs. Targeting transgenes in the LiPS-A3S genomic locus can find broad applications in stem cell research and possibly cell and gene therapy.

18.
Mol Ther Nucleic Acids ; 5: e284, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26836371

ABSTRACT

Human pluripotent stem cells (hPSCs) hold great promise for cell therapy. However, a major concern is the risk of tumor formation by residual undifferentiated cells contaminating the hPSC-derived cell product. Suicide genes could safeguard against such adverse events by enabling elimination of cells gone astray, but the efficacy of this approach has not yet been thoroughly tested. Here, we engineered a lentivirally encoded herpes simplex virus thymidine kinase (HSVtk) with expression restricted to undifferentiated hPSCs through regulation by the let7 family of miRNAs. We show that induced pluripotent stem cells (iPSCs) expressing a let7-regulated HSVtk transgene are selectively killed by ganciclovir (GCV), whereas differentiated cells are fully protected. However, in contrast to previous studies, we find that in vivo GCV administration results in longer latency but does not prevent teratoma formation by iPSCs expressing either a constitutive or a let7-regulated HSVtk, without evidence of silencing of the HSVtk. Clonal analyses of iPSCs expressing HSVtk revealed frequent emergence of GCV resistance which, at least in some cases, could be attributed to preexisting inactivating mutations in the HSVtk coding sequence, selected for upon GCV treatment. Our findings have important consequences for the future use of suicide genes in hPSC-based cell therapies.

19.
Nat Biotechnol ; 33(6): 646-55, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25798938

ABSTRACT

Chromosomal deletions associated with human diseases, such as cancer, are common, but synteny issues complicate modeling of these deletions in mice. We use cellular reprogramming and genome engineering to functionally dissect the loss of chromosome 7q (del(7q)), a somatic cytogenetic abnormality present in myelodysplastic syndromes (MDS). We derive del(7q)- and isogenic karyotypically normal induced pluripotent stem cells (iPSCs) from hematopoietic cells of MDS patients and show that the del(7q) iPSCs recapitulate disease-associated phenotypes, including impaired hematopoietic differentiation. These disease phenotypes are rescued by spontaneous dosage correction and can be reproduced in karyotypically normal cells by engineering hemizygosity of defined chr7q segments in a 20-Mb region. We use a phenotype-rescue screen to identify candidate haploinsufficient genes that might mediate the del(7q)- hematopoietic defect. Our approach highlights the utility of human iPSCs both for functional mapping of disease-associated large-scale chromosomal deletions and for discovery of haploinsufficient genes.


Subject(s)
Chromosome Deletion , Genetic Engineering , Induced Pluripotent Stem Cells/cytology , Myelodysplastic Syndromes/genetics , Animals , Chromosomes, Human, Pair 7/genetics , Humans , Karyotyping , Mice , Myelodysplastic Syndromes/therapy
20.
J Neurosci ; 32(38): 13111-24, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22993428

ABSTRACT

Loss of the RNA-binding fragile X protein [fragile X mental retardation protein (FMRP)] results in a spectrum of cognitive deficits, the fragile X syndrome (FXS), while aging individuals with decreased protein levels present with a subset of these symptoms and tremor. The broad range of behavioral deficits likely reflects the ubiquitous distribution and multiple functions of the protein. FMRP loss is expected to affect multiple neuronal proteins and intracellular signaling pathways, whose identity and interactions are essential in understanding and ameliorating FXS symptoms. We used heterozygous mutants and targeted RNA interference-mediated abrogation in Drosophila to uncover molecular pathways affected by FMRP reduction. We present evidence that FMRP loss results in excess metabotropic glutamate receptor (mGluR) activity, attributable at least in part to elevation of the protein in affected neurons. Using high-resolution behavioral, genetic, and biochemical analyses, we present evidence that excess mGluR upon FMRP attenuation is linked to the cAMP decrement reported in patients and models, and underlies olfactory associative learning and memory deficits. Furthermore, our data indicate positive transcriptional regulation of the fly fmr1 gene by cAMP, via protein kinase A, likely through the transcription factor CREB. Because the human Fmr1 gene also contains CREB binding sites, the interaction of mGluR excess and cAMP signaling defects we present suggests novel combinatorial pharmaceutical approaches to symptom amelioration upon FMRP attenuation.


Subject(s)
Cyclic AMP/metabolism , Learning Disabilities/genetics , Memory Disorders/genetics , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/physiology , Analysis of Variance , Animals , Animals, Genetically Modified , Avoidance Learning/drug effects , Avoidance Learning/physiology , Behavior, Animal , CREB-Binding Protein/metabolism , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Drosophila , Excitatory Amino Acid Antagonists , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Learning Disabilities/drug therapy , Memory Disorders/drug therapy , Mushroom Bodies/metabolism , Mushroom Bodies/pathology , Mutation/genetics , Phosphodiesterase 4 Inhibitors/pharmacology , Pyridines/pharmacology , Qa-SNARE Proteins/metabolism , RNA Interference/physiology , RNA, Messenger/metabolism , Receptors, Metabotropic Glutamate/genetics , Rolipram/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...