Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9267, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649408

ABSTRACT

There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the molecules. This approach can, in principle, produce the most diverse samples of cold molecules. We present quantum mechanical and semiclassical calculations of the elastic scattering differential cross sections and rate coefficients of the C60 fullerene with He and Ar noble-gas atoms in order to quantify the effectiveness of buffer gas cooling for this molecule. We also develop new three-dimensional potential energy surfaces for this purpose using dispersion-corrected density functional theory (DFT) with counterpoise correction. The icosahedral anisotropy of the molecular system is reproduced by expanding the potential in terms of symmetry-allowed spherical harmonics. Long-range dispersion coefficients have been computed from frequency dependent polarizabilities of C60 and the noble-gas atoms. We find that the potential of the fullerene with He is about five times shallower than that with Ar. Anisotropic corrections are very weak for both systems and omitted in the quantum scattering calculations giving us a nearly quantitative estimate of elastic scattering observables. Finally, we have computed differential cross sections at the collision energies used in experiments by Han et al. (Chem Phys Lett 235:211, 1995), corrected for the sensitivity of their apparatus, and we find satisfactory agreement for C60 scattering with Ar.

2.
J Phys Chem A ; 127(29): 5979-5985, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37436458

ABSTRACT

Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces in the multidimensional coordinate space of colliding atoms and molecules. Conical intersections and corresponding nonadiabatic coupling can greatly affect molecular dynamics and chemical properties. In this paper, we predict significant or measurable nonadiabatic effects in an ultracold atom-ion charge-exchange reaction in the presence of laser-induced conical intersections (LICIs). We investigate the fundamental physics of these LICIs on molecular reactivity under unique conditions: those of relatively low laser intensity of 108 W/cm2 and ultracold temperatures below 1 mK. We predict irregular interference effects in the charge-exchange rate coefficients between K and Ca+ as functions of the laser frequency. These irregularities occur in our system due to the presence of two LICIs. To further elucidate the role of the LICIs on the reaction dynamics, we compare these rate coefficients with those computed for a system where the CIs have been "removed". In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as 1 × 10-9 cm3/s.

3.
J Phys Chem Lett ; 14(14): 3413-3421, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37001115

ABSTRACT

Ultracold chemical reactions of weakly bound triplet-state alkali metal dimer molecules have recently attracted much experimental interest. We perform rigorous quantum scattering calculations with a new ab initio potential energy surface to explore the chemical reaction of spin-polarized NaLi(a3Σ+) and Li(2S) to form Li2(a3Σu+) and Na(2S). The reaction is exothermic and proceeds readily at ultralow temperatures. Significantly, we observe strong sensitivity of the total reaction rate to small variations of the three-body part of the Li2Na interaction at short range, which we attribute to a relatively small number of open Li2(a3Σu+) product channels populated in the reaction. This provides the first signature of highly non-universal dynamics seen in rigorous quantum reactive scattering calculations of an ultracold exothermic insertion reaction involving a polar alkali dimer molecule, opening up the possibility of probing microscopic interactions in atom+molecule collision complexes via ultracold reactive scattering experiments.

4.
Phys Rev Lett ; 127(10): 103402, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533330

ABSTRACT

We demonstrate that it is possible to efficiently control ultracold chemical reactions of alkali-metal atoms colliding with open-shell alkali-metal dimers in their metastable triplet states by choosing the internal hyperfine and rovibrational states of the reactants as well as by inducing magnetic Feshbach resonances with an external magnetic field. We base these conclusions on coupled-channel statistical calculations that include the effects of hyperfine contact and magnetic-field-induced Zeeman interactions on ultracold chemical reactions of hyperfine-resolved ground-state Na and the triplet NaLi(a^{3}Σ^{+}) producing singlet Na_{2}(^{1}Σ_{g}^{+}) and a Li atom. We find that the reaction rates are sensitive to the initial hyperfine states of the reactants. The chemical reaction of fully spin-polarized, high-spin states of rotationless NaLi(a^{3}Σ^{+},v=0,N=0) molecules with fully spin-polarized Na is suppressed by a factor of 10-100 compared to that of unpolarized reactants. We interpret these findings within the adiabatic state model, which treats the reaction as a sequence of nonadiabatic transitions between the initial nonreactive high-spin state and the final low-spin states of the reaction complex. In addition, we show that magnetic Feshbach resonances can similarly change reaction rate coefficients by several orders of magnitude. Some of these resonances are due to resonant trimer bound states dissociating to the N=2 rotational state of NaLi(a^{3}Σ^{+},v=0) and would thus exist in systems without hyperfine interactions.

5.
Phys Rev Lett ; 127(1): 015301, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270282

ABSTRACT

The Hopf insulator is a weak topological insulator characterized by an insulating bulk with conducting edge states protected by an integer-valued linking number invariant. The state exists in three-dimensional two-band models. We demonstrate that the Hopf insulator can be naturally realized in lattices of dipolar-interacting spins, where spin exchange plays the role of particle hopping. The long-ranged, anisotropic nature of the dipole-dipole interactions allows for the precise detail required in the momentum-space structure, while different spin orientations ensure the necessary structure of the complex phases of the hoppings. Our model features robust gapless edge states at both smooth edges, as well as sharp edges obeying a certain crystalline symmetry, despite the breakdown of the two-band picture at the latter. In an accompanying paper [T. Schuster et al., Phys. Rev. A 103, AW11986 (2021)PLRAAN2469-9926] we provide a specific experimental blueprint for implementing our proposal using ultracold polar molecules of ^{40}K^{87}Rb.

6.
Sci Rep ; 11(1): 10598, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011983

ABSTRACT

Perfectly controlled molecules are at the forefront of the quest to explore chemical reactivity at ultra low temperatures. Here, we investigate for the first time the formation of the long-lived intermediates in the time-dependent scattering of cold bialkali [Formula: see text]Rb molecules with and without the presence of infrared trapping light. During the nearly 50 nanoseconds mean collision time of the intermediate complex, we observe unconventional roaming when for a few tens of picoseconds either NaRb or [Formula: see text] and [Formula: see text] molecules with large relative separation are formed before returning to the four-atom complex. We also determine the likelihood of molecular loss when the trapping laser is present during the collision. We find that at a wavelength of 1064 nm the [Formula: see text] complex is quickly destroyed and thus that the [Formula: see text]Rb molecules are rapidly lost.

7.
Phys Chem Chem Phys ; 23(9): 5096-5112, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33576359

ABSTRACT

Electronically non-adiabatic effects play an important role in many chemical reactions. However, how these effects manifest in cold and ultracold chemistry remains largely unexplored. Here for the first time we present from first principles the non-adiabatic quantum dynamics of the reactive scattering between ultracold alkali-metal LiNa molecules and Li atoms. We show that non-adiabatic dynamics induces quantum interference effects that dramatically alter the ultracold rotationally resolved reaction rate coefficients. The interference effect arises from the conical intersection between the ground and an excited electronic state that is energetically accessible even for ultracold collisions. These unique interference effects might be exploited for quantum control applications such as a quantum molecular switch. The non-adiabatic dynamics are based on full-dimensional ab initio potential energy surfaces for the two electronic states that includes the non-adiabatic couplings and an accurate treatment of the long-range interactions. A statistical analysis of rotational populations of the Li2 product reveals a Poisson distribution implying the underlying classical dynamics are chaotic. The Poisson distribution is robust and amenable to experimental verification and appears to be a universal property of ultracold reactions involving alkali metal dimers.

8.
Phys Chem Chem Phys ; 22(36): 20531-20544, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32966419

ABSTRACT

A barrier to realizing the potential of molecules for quantum information science applications is a lack of high-fidelity, single-molecule imaging techniques. Here, we present and theoretically analyze a general scheme for dispersive imaging of electronic ground-state molecules. Our technique relies on the intrinsic anisotropy of excited molecular rotational states to generate optical birefringence, which can be detected through polarization rotation of an off-resonant probe laser beam. Using 23Na87Rb and 87Rb133Cs as examples, we construct a formalism for choosing the molecular state to be imaged and the excited electronic states involved in off-resonant coupling. Our proposal establishes the relevant parameters for achieving degree-level polarization rotations for bulk molecular gases, thus enabling high-fidelity nondestructive imaging. We additionally outline requirements for the high-fidelity imaging of individually trapped molecules.

9.
Sci Rep ; 10(1): 14130, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32839529

ABSTRACT

The effect of conical intersections (CIs) on electronic relaxation, transitions from excited states to ground states, is well studied, but their influence on hyperfine quenching in a reactant molecule is not known. Here, we report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states. Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection at collinear geometry. We observe wide scattering resonance features in both elastic and inelastic rate coefficients at collision energies below [Formula: see text]. They are identified as either p- or d-wave shape resonances. We also describe the electronic potentials relevant for these non-reactive collisions, their diabatization procedure, as well as the non-adiabatic coupling between the diabatic potentials near the CIs.

10.
Phys Rev Lett ; 125(2): 023201, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701321

ABSTRACT

We demonstrate a versatile, state-dependent trapping scheme for the ground and first excited rotational states of ^{23}Na^{40}K molecules. Close to the rotational manifold of a narrow electronic transition, we determine tune-out frequencies where the polarizability of one state vanishes while the other remains finite, and a magic frequency where both states experience equal polarizability. The proximity of these frequencies of only 10 GHz allows for dynamic switching between different trap configurations in a single experiment, while still maintaining sufficiently low scattering rates.

11.
Phys Chem Chem Phys ; 22(19): 10870-10881, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32367082

ABSTRACT

We present experimental evidence of charge exchange between laser-cooled potassium 39K atoms and calcium 40Ca+ ions in a hybrid atom-ion trap and give quantitative theoretical explanations for the observations. The 39K atoms and 40Ca+ ions are held in a magneto-optical (MOT) and a linear Paul trap, respectively. Fluorescence detection and high resolution time of flight mass spectra for both species are used to determine the remaining number of 40Ca+ ions, the increasing number of 39K+ ions, and 39K number density as functions of time. Simultaneous trap operation is guaranteed by alternating periods of MOT and 40Ca+ cooling lights, thus avoiding direct ionization of 39K by the 40Ca+ cooling light. We show that the K-Ca+ charge-exchange rate coefficient increases linearly from zero with 39K number density and the fraction of 40Ca+ ions in the 4p 2P1/2 electronically-excited state. Combined with our theoretical analysis, we conclude that these data can only be explained by a process that starts with a potassium atom in its electronic ground state and a calcium ion in its excited 4p 2P1/2 state producing ground-state 39K+ ions and metastable, neutral Ca (3d4p 3P1) atoms, releasing only 150 cm-1 equivalent relative kinetic energy. Charge-exchange between either ground- or excited-state 39K and ground-state 40Ca+ is negligibly small as no energetically-favorable product states are available. Our experimental and theoretical rate coefficients are in agreement given the uncertainty budgets.

12.
Phys Rev X ; 10(3)2020.
Article in English | MEDLINE | ID: mdl-34408918

ABSTRACT

We report on the observation of magnetic Feshbach resonances in a Fermi-Fermi mixture of ultracold atoms with extreme mass imbalance and on their unique p-wave dominated three-body recombination processes. Our system consists of open-shell alkali-metal 6Li and closed-shell 173Yb atoms, both spin polarized and held at various temperatures between 1 and 20 µK. We confirm that Feshbach resonances in this system are solely the result of a weak separation-dependent hyperfine coupling between the electronic spin of 6Li and the nuclear spin of 173Yb. Our analysis also shows that three-body recombination rates are controlled by the identical fermion nature of the mixture, even in the presence of s-wave collisions between the two species and with recombination rate coefficients outside the Wigner threshold regime at our lowest temperature. Specifically, a comparison of experimental and theoretical line shapes of the recombination process indicates that the characteristic asymmetric line shape as a function of applied magnetic field and a maximum recombination rate coefficient that is independent of temperature can only be explained by triatomic collisions with nonzero, p-wave total orbital angular momentum. The resonances can be used to form ultracold doublet ground-state molecules and to simulate quantum superfluidity in mass-imbalanced mixtures.

13.
Science ; 365(6458): 1079, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31515372

Subject(s)
Optical Tweezers
14.
Phys Rev Lett ; 122(23): 233401, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298913

ABSTRACT

Using a recently developed method for precisely controlling collision energy, we observe a dramatic suppression of inelastic collisions between an atom and ion (Ca+Yb^{+}) at low collision energy. This suppression, which is expected to be a universal phenomenon, arises when the spontaneous emission lifetime of the excited state is comparable to or shorter than the collision complex lifetime. We develop a technique to remove this suppression and engineer excited-state interactions. By dressing the system with a strong catalyst laser, a significant fraction of the collision complexes can be excited at a specified atom-ion separation. This technique allows excited-state collisions to be studied, even at ultracold temperature, and provides a general method for engineering ultracold excited-state interactions.

15.
Sci Adv ; 4(2): eaap8308, 2018 02.
Article in English | MEDLINE | ID: mdl-29487908

ABSTRACT

Ergodic quantum systems are often quite alike, whereas nonergodic, fractal systems are unique and display characteristic properties. We explore one of these fractal systems, weakly bound dysprosium lanthanide molecules, in an external magnetic field. As recently shown, colliding ultracold magnetic dysprosium atoms display a soft chaotic behavior with a small degree of disorder. We broaden this classification by investigating the generalized inverse participation ratio and fractal dimensions for large sets of molecular wave functions. Our exact close-coupling simulations reveal a dynamic phase transition from partially localized states to totally delocalized states and universality in its distribution by increasing the magnetic field strength to only a hundred Gauss (or 10 mT). Finally, we prove the existence of nonergodic delocalized phase in the system and explain the violation of ergodicity by strong coupling between near-threshold molecular states and the nearby continuum.

16.
Phys Rev Lett ; 121(25): 253401, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608826

ABSTRACT

Superpositions of rotational states in polar molecules induce strong, long-range dipolar interactions. Here we extend the rotational coherence by nearly 1 order of magnitude to 8.7(6) ms in a dilute gas of polar ^{23}Na^{40}K molecules in an optical trap. We demonstrate spin-decoupled magic trapping, which cancels first-order and reduces second-order differential light shifts. The latter is achieved with a dc electric field that decouples nuclear spin, rotation, and trapping light field. We observe density-dependent coherence times, which can be explained by dipolar interactions in the bulk gas.

17.
Article in English | MEDLINE | ID: mdl-31093590

ABSTRACT

Laser-cooled lanthanide atoms are ideal candidates with which to study strong and unconventional quantum magnetism with exotic phases. Here, we use state-of-the-art closed-coupling simulations to model quantum magnetism for pairs of ultracold spin-6 erbium lanthanide atoms placed in a deep optical lattice. In contrast to the widely used single-channel Hubbard model description of atoms and molecules in an optical lattice, we focus on the single-site multichannel spin evolution due to spin-dependent contact, anisotropic van der Waals, and dipolar forces. This has allowed us to identify the leading mechanism, orbital anisotropy, that governs molecular spin dynamics among erbium atoms. The large magnetic moment and combined orbital angular momentum of the 4f -shell electrons are responsible for these strong anisotropic interactions and unconventional quantum magnetism. Multichannel simulations of magnetic Cr atoms under similar trapping conditions show that their spin evolution is controlled by spin-dependent contact interactions that are distinct in nature from the orbital anisotropy in Er. The role of an external magnetic field and the aspect ratio of the lattice site on spin dynamics is also investigated.

18.
J Chem Phys ; 146(8): 084304, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28249443

ABSTRACT

We study the low-temperature charge transfer reaction between a neutral atom and an ion under the influence of near-resonant laser light. By setting up a multi-channel model with field-dressed states, we demonstrate that the reaction rate coefficient can be enhanced by several orders of magnitude with laser intensities of 106 W/cm2 or larger. In addition, depending on laser frequency, one can induce a significant enhancement or suppression of the charge-exchange rate coefficient. For our intensities, multi-photon processes are not important.

19.
Phys Rev A (Coll Park) ; 95(6)2017 Jun.
Article in English | MEDLINE | ID: mdl-29876534

ABSTRACT

We theoretically investigate trapping conditions for ultracold polar molecules in optical lattices, when external magnetic and electric fields are simultaneously applied. Our results are based on an accurate electronic-structure calculation of the polar 23Na40K polar molecule in its absolute ground state combined with a calculation of its rovibrational-hyperfine motion. We find that an electric field strength of 5.26(15) kV/cm and an angle of 54.7° between this field and the polarization of the optical laser lead to a trapping design for 23Na40K molecules where decoherences due laser-intensity fluctuations and fluctuations in the direction of its polarization are kept to a minimum. One standard deviation systematic and statistical uncertainties are given in parenthesis. Under such conditions pairs of hyperfine-rotational states of v = 0 molecules, used to induce tunable dipole-dipole interactions between them, experience ultrastable, matching trapping forces.

20.
Nat Commun ; 7: 11234, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27088647

ABSTRACT

Buffer gas cooling of molecules to cold and ultracold temperatures is a promising technique for realizing a host of scientific and technological opportunities. Unfortunately, experiments using cryogenic buffer gases have found that although the molecular motion and rotation are quickly cooled, the molecular vibration relaxes at impractically long timescales. Here, we theoretically explain the recently observed exception to this rule: efficient vibrational cooling of BaCl(+) by a laser-cooled Ca buffer gas. We perform intense close-coupling calculations that agree with the experimental result, and use both quantum defect theory and a statistical capture model to provide an intuitive understanding of the system. This result establishes that, in contrast to the commonly held opinion, there exists a large class of systems that exhibit efficient vibrational cooling and therefore supports a new route to realize the long-sought opportunities offered by molecular structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...