Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
iScience ; 27(6): 110062, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947499

ABSTRACT

As a research infrastructure with a mission to provide services for bioinformatics, ELIXIR aims to identify and inform its target audiences. Here, we present a survey on a community of researchers studying the environment with omics approaches in Greece, one of the youngest member countries of ELIXIR. Personal interviews followed by quantitative and qualitative analysis were employed to document interactions and practices of the community and to perform a gap analysis for the transition toward multiomics and systems biology. Environmental omics in Greece mostly concerns production of data, in large majority on microbes and non-model organisms. Our survey highlighted (1) the popularity and suitability of targeted hands-on training events; (2) data quality and management issues as important elements for the transition to multiomics, and (3) lack of knowledge and misconceptions regarding interoperability, metadata standards, and pre-registration. The publicly available collected answers represent a valuable resource in view of future strategic planning.

2.
Biodivers Data J ; 12: e114809, 2024.
Article in English | MEDLINE | ID: mdl-38283142

ABSTRACT

This paper describes a dataset of microbial communities from four different sponge species: Irciniaoros (Schmidt, 1864), Irciniavariabilis (Schmidt, 1862), Sarcotragusspinosulus Schmidt, 1862 and Sarcotragusfasciculatus (Pallas, 1766). The examined sponges all belong to Demospongiae (Class); Keratosa (Subclass); Dictyoceratida (Order); Irciniidae (Family). Samples were collected by scuba diving at depths between 6-14 m from two sampling sites of rocky formations at the northern coast of Crete (Cretan Sea, eastern Mediterranean) and were subjected to metabarcoding for the V5-V6 region of the 16S rRNA gene.

3.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37850871

ABSTRACT

BACKGROUND: Genomic Observatories (GOs) are sites of long-term scientific study that undertake regular assessments of the genomic biodiversity. The European Marine Omics Biodiversity Observation Network (EMO BON) is a network of GOs that conduct regular biological community samplings to generate environmental and metagenomic data of microbial communities from designated marine stations around Europe. The development of an effective workflow is essential for the analysis of the EMO BON metagenomic data in a timely and reproducible manner. FINDINGS: Based on the established MGnify resource, we developed metaGOflow. metaGOflow supports the fast inference of taxonomic profiles from GO-derived data based on ribosomal RNA genes and their functional annotation using the raw reads. Thanks to the Research Object Crate packaging, relevant metadata about the sample under study, and the details of the bioinformatics analysis it has been subjected to, are inherited to the data product while its modular implementation allows running the workflow partially. The analysis of 2 EMO BON samples and 1 Tara Oceans sample was performed as a use case. CONCLUSIONS: metaGOflow is an efficient and robust workflow that scales to the needs of projects producing big metagenomic data such as EMO BON. It highlights how containerization technologies along with modern workflow languages and metadata package approaches can support the needs of researchers when dealing with ever-increasing volumes of biological data. Despite being initially oriented to address the needs of EMO BON, metaGOflow is a flexible and easy-to-use workflow that can be broadly used for one-sample-at-a-time analysis of shotgun metagenomics data.


Subject(s)
Genomics , Software , Workflow , Metagenomics , Computational Biology , Metagenome
4.
Front Genet ; 12: 790850, 2021.
Article in English | MEDLINE | ID: mdl-34956332

ABSTRACT

The Tetraodontidae family encompasses several species which attract scientific interest in terms of their ecology and evolution. The silver-cheeked toadfish (Lagocephalus sceleratus) is a well-known "invasive sprinter" that has invaded and spread, in less than a decade, throughout the Eastern and part of the Western Mediterranean Sea from the Red Sea through the Suez Canal. In this study, we built and analysed the first near-chromosome level genome assembly of L. sceleratus and explored its evolutionary landscape. Through a phylogenomic analysis, we positioned L. sceleratus closer to T. nigroviridis, compared to other members of the family, while gene family evolution analysis revealed that genes associated with the immune response have experienced rapid expansion, providing a genetic basis for studying how L. sceleratus is able to achieve highly successful colonisation. Moreover, we found that voltage-gated sodium channel (NaV 1.4) mutations previously connected to tetrodotoxin resistance in other pufferfishes are not found in L. sceleratus, highlighting the complex evolution of this trait. The high-quality genome assembly built here is expected to set the ground for future studies on the species biology.

5.
Gigascience ; 10(8)2021 08 18.
Article in English | MEDLINE | ID: mdl-34405237

ABSTRACT

High-performance computing (HPC) systems have become indispensable for modern marine research, providing support to an increasing number and diversity of users. Pairing with the impetus offered by high-throughput methods to key areas such as non-model organism studies, their operation continuously evolves to meet the corresponding computational challenges. Here, we present a Tier 2 (regional) HPC facility, operating for over a decade at the Institute of Marine Biology, Biotechnology, and Aquaculture of the Hellenic Centre for Marine Research in Greece. Strategic choices made in design and upgrades aimed to strike a balance between depth (the need for a few high-memory nodes) and breadth (a number of slimmer nodes), as dictated by the idiosyncrasy of the supported research. Qualitative computational requirement analysis of the latter revealed the diversity of marine fields, methods, and approaches adopted to translate data into knowledge. In addition, hardware and software architectures, usage statistics, policy, and user management aspects of the facility are presented. Drawing upon the last decade's experience from the different levels of operation of the Institute of Marine Biology, Biotechnology, and Aquaculture HPC facility, a number of lessons are presented; these have contributed to the facility's future directions in light of emerging distribution technologies (e.g., containers) and Research Infrastructure evolution. In combination with detailed knowledge of the facility usage and its upcoming upgrade, future collaborations in marine research and beyond are envisioned.


Subject(s)
Computing Methodologies , Marine Biology , Aquaculture/methods , Biotechnology/methods , Marine Biology/methods , Software
6.
Sci Rep ; 11(1): 1336, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446715

ABSTRACT

Although the rise of antibiotic and multidrug resistant bacteria is one of the biggest current threats to human health, our understanding of the mechanisms involved in antibiotic resistance selection remains scarce. We performed whole genome sequencing of 21 Pseudomonas strains, previously isolated from an active submarine volcano of Greece, the Kolumbo volcano. Our goal was to identify the genetic basis of the enhanced co-tolerance to antibiotics and acidity of these Pseudomonas strains. Pangenome analysis identified 10,908 Gene Clusters (GCs). It revealed that the numbers of phage-related GCs and sigma factors, which both provide the mechanisms of adaptation to environmental stressors, were much higher in the high tolerant Pseudomonas strains compared to the rest ones. All identified GCs of these strains were associated with antimicrobial and multidrug resistance. The present study provides strong evidence that the CO2-rich seawater of the volcano associated with low pH might be a reservoir of microorganisms carrying multidrug efflux-mediated systems and pumps. We, therefore, suggest further studies of other extreme environments (or ecosystems) and their associated physicochemical parameters (or factors) in the rise of antibiotic resistance.


Subject(s)
Adaptation, Physiological/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Hydrothermal Vents/microbiology , Pseudomonas/genetics , Seawater/microbiology , Greece , Pseudomonas/isolation & purification
7.
Viruses ; 12(8)2020 07 26.
Article in English | MEDLINE | ID: mdl-32722579

ABSTRACT

Viruses interfere with their host's metabolism through the expression of auxiliary metabolic genes (AMGs) that, until now, are mostly studied under large physicochemical gradients. Here, we focus on coastal marine ecosystems and we sequence the viral metagenome (virome) of samples with discrete levels of human-driven disturbances. We aim to describe the relevance of viromics with respect to ecological quality status, defined by the classic seawater trophic index (TRIX). Neither viral (family level) nor bacterial (family level, based on 16S rRNA sequencing) community structure correlated with TRIX. AMGs involved in the Calvin and tricarboxylic acid cycles were found at stations with poor ecological quality, supporting viral lysis by modifying the host's energy supply. AMGs involved in "non-traditional" energy-production pathways (3HP, sulfur oxidation) were found irrespective of ecological quality, highlighting the importance of recognizing the prevalent metabolic paths and their intermediate byproducts. Various AMGs explained the variability between stations with poor vs. good ecological quality. Our study confirms the pivotal role of the virome content in ecosystem functioning, acting as a "pool" of available functions that may be transferred to the hosts. Further, it suggests that AMGs could be used as an ultra-sensitive metric of energy-production pathways with relevance in the vulnerable coastal zone and its ecological quality.


Subject(s)
Ecosystem , Metagenomics , Seawater/virology , Viral Proteins/genetics , Virome , Viruses/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
8.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32354980

ABSTRACT

We report the 28-Mbp draft genome sequence of the marine fungus Cladosporium sp. strain TM138. The species was isolated from the marine invertebrate Didemnum maculosum Its genome sequence will inform future investigations into the species' enzymatic potential for bioremediation and its evolution in marine environments.

9.
Mar Environ Res ; 144: 102-110, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30654982

ABSTRACT

As ocean acidification intensifies, there is growing global concern about the impacts that future pH levels are likely to have on marine life and ecosystems. By analogy, a steep decrease of seawater pH with depth is encountered inside the Kolumbo submarine volcano (northeast Santorini) as a result of natural CO2 venting, making this system ideal for ocean acidification research. Here, we investigated whether the increase of acidity towards deeper layers of Kolumbo crater had any effect on relevant phenotypic traits of bacterial isolates. A total of 31 Pseudomonas strains were isolated from both surface- (SSL) and deep-seawater layers (DSL), with the latter presenting a significantly higher acid tolerance. In particular, the DSL strains were able to cope with H+ levels that were 18 times higher. Similarly, the DSL isolates exhibited a significantly higher tolerance than SSL strains against six commonly used antibiotics and As(III). More importantly, a significant positive correlation was revealed between antibiotics and acid tolerance across the entire set of SSL and DSL isolates. Our findings imply that Pseudomonas species with higher resilience to antibiotics could be favored by the prospect of acidifying oceans. Further studies are required to determine if this feature is universal across marine bacteria and to assess potential ecological impacts.


Subject(s)
Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Ecosystem , Hydrothermal Vents/microbiology , Pseudomonas/drug effects , Carbon Dioxide , Hydrogen-Ion Concentration , Oceans and Seas , Pseudomonas/classification , Pseudomonas/isolation & purification , Seawater/microbiology
10.
Sci Rep ; 8(1): 8326, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844462

ABSTRACT

Identifying patterns of individual movements in spatial and temporal scales can provide valuable insight into the structure of populations and the dynamics of communities and ecosystems. Especially for migrating birds, that can face a variety of unfavorable conditions along their journey, resolving movements of individuals across their annual cycle is necessary in order to design better targeted conservation strategies. Here, we studied the movements of a small migratory falcon, the Lesser Kestrel (Falco naumanni), by genetically assigning feathers from individuals of unknown origin that concentrate in large roosts during the pre-migratory period. Our findings suggest that birds from multiple breeding populations in the Central and Eastern Mediterranean region move towards two pre-migratory sites in the Balkans, some of them detouring greatly from their expected flyways, travelling more than 500 km to reach these sites and prepare for the post-nuptial migration. By identifying the origin of individuals using the pre-migratory sites, not only we provide a better understanding of the possible impact of local threats at these sites on multiple breeding populations but also inform the design of effective conservation actions for the species.


Subject(s)
Animal Migration/physiology , Falconiformes/genetics , Animals , Balkan Peninsula , Birds/genetics , Breeding , Ecosystem , Genetic Markers/genetics , Mediterranean Region , Population Dynamics , Seasons , Sexual Behavior, Animal
11.
Extremophiles ; 22(5): 825, 2018 09.
Article in English | MEDLINE | ID: mdl-29492667

ABSTRACT

In the original publication there is a mistake in the supplementary material. The correct supplementary material is provided in this correction article.

12.
Extremophiles ; 22(1): 13-27, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29067531

ABSTRACT

Over the last decades, there has been growing interest about the ecological role of hydrothermal sulfide chimneys, their microbial diversity and associated biotechnological potential. Here, we performed dual-index Illumina sequencing of bacterial and archaeal communities on active and inactive sulfide chimneys collected from the Kolumbo hydrothermal field, situated on a geodynamic convergent setting. A total of 15,701 OTUs (operational taxonomic units) were assigned to 56 bacterial and 3 archaeal phyla, 133 bacterial and 16 archaeal classes. Active chimney communities were dominated by OTUs related to thermophilic members of Epsilonproteobacteria, Aquificae and Deltaproteobacteria. Inactive chimney communities were dominated by an OTU closely related to the archaeon Nitrosopumilus sp., and by members of Gammaproteobacteria, Deltaproteobacteria, Planctomycetes and Bacteroidetes. These lineages are closely related to phylotypes typically involved in iron, sulfur, nitrogen, hydrogen and methane cycling. Overall, the inactive sulfide chimneys presented highly diverse and uniform microbial communities, in contrast to the active chimney communities, which were dominated by chemolithoautotrophic and thermophilic lineages. This study represents one of the most comprehensive investigations of microbial diversity in submarine chimneys and elucidates how the dissipation of hydrothermal activity affects the structure of microbial consortia in these extreme ecological niches.


Subject(s)
Hydrothermal Vents/microbiology , Microbiota , Sulfides/analysis , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Archaea/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Hydrogen/metabolism , Hydrothermal Vents/chemistry , Iron/metabolism , Methane/metabolism , Nitrogen/metabolism , Sulfides/metabolism
13.
Gigascience ; 6(12): 1-13, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29126158

ABSTRACT

Background: Teleosts of the genus Seriola, commonly known as amberjacks, are of high commercial value in international markets due to their flesh quality and worldwide distribution. The Seriola species of interest to Mediterranean aquaculture is the greater amberjack (Seriola dumerili). This species holds great potential for the aquaculture industry, but in captivity, reproduction has proved to be challenging, and observed growth dysfunction hinders their domestication. Insights into molecular mechanisms may contribute to a better understanding of traits like growth and sex, but investigations to unravel the molecular background of amberjacks have begun only recently. Findings: Illumina HiSeq sequencing generated a high-coverage greater amberjack genome sequence comprising 45 909 scaffolds. Comparative mapping to the Japanese yellowtail (Seriola quinqueriadiata) and to the model species medaka (Oryzias latipes) allowed the generation of in silico groups. Additional gonad transcriptome sequencing identified sex-biased transcripts, including known sex-determining and differentiation genes. Investigation of the muscle transcriptome of slow-growing individuals showed that transcripts involved in oxygen and gas transport were differentially expressed compared with fast/normal-growing individuals. On the other hand, transcripts involved in muscle functions were found to be enriched in fast/normal-growing individuals. Conclusion: The present study provides the first insights into the molecular background of male and female amberjacks and of fast- and slow-growing fish. Therefore, valuable molecular resources have been generated in the form of a first draft genome and a reference transcriptome. Sex-biased genes, which may also have roles in sex determination or differentiation, and genes that may be responsible for slow growth are suggested.


Subject(s)
Fish Proteins/genetics , Fishes/genetics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Animals , Female , Fishes/classification , Gene Expression Regulation , Gonads/metabolism , Male , Molecular Sequence Annotation , Muscles/metabolism , Organ Specificity , Sex Characteristics
14.
J Biol Res (Thessalon) ; 24: 3, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28239596

ABSTRACT

BACKGROUND: Elucidating the patterns of the Atlantic Bluefin tuna [ABFT, Thunnus thynnus (Linnaeus, 1758)] population structure constitutes a challenging task of great importance. Most of the unique challenges stem from its biology, as well as the attributes of the marine realm in which it disperses. Accurate information is urgently needed for stock assessment, and the identification of critical features to the persistence and adaptation of populations in order to formulate and adopt effective strategies for ABFT conservation and management. Conclusions of a great number of ABFT genetic studies on the Mediterranean Sea stock structure are rather controversial and not yet conclusive. In this study, ABFT genomic diversity was investigated in the Mediterranean Sea, which is the most important area for the species' reproduction. RESULTS: Analyzing genome-wide SNPs and microsatellites from ABFT samples collected throughout the Mediterranean Sea did not provide strong evidence of genetic structure, pointing towards the existence of a single panmictic unit. An alternative view would recognize a failure to reject the null hypothesis of a panmictic unit as an effect of the study's sampling design, the type of markers used, and the effectiveness/suitability of analysis methods in respect to the species biological characteristics or any combination of the above. CONCLUSIONS: Unravelling the drivers of ABFT population diversity would require the consideration of important aspects of the species spawning behavior for the determination of the appropriate sampling design. Novel approaches and methods of analysis that will bring together experts in genetics/-omics, ecology and oceanography are deemed necessary. Analyzing ABFT genetic data under the discipline of seascape genetics could provide the analysis framework under which major abiotic and biotic forces controlling ABFT recruitment could be identified, elucidating the complicated population dynamics of the species, while multiple and continuous fisheries monitoring should in all cases be considered as a prerequisite in order to achieve efficient and long-term ABFT conservation.

15.
Sci Rep ; 6: 28013, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27311383

ABSTRACT

Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.

16.
Gigascience ; 5: 14, 2016.
Article in English | MEDLINE | ID: mdl-26998258

ABSTRACT

Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions.


Subject(s)
Conservation of Natural Resources/methods , Ecology/methods , Ecosystem , Models, Theoretical , Climate , Conservation of Natural Resources/trends , Ecology/trends , Forecasting , Human Activities , Humans , Islands , Polynesia
17.
Mar Genomics ; 28: 71-81, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26831186

ABSTRACT

Lagoons are naturally enriched habitats, with unstable environmental conditions caused by their confinement, shallow depth and state of saprobity. The frequent fluctuations of the abiotic variables cause severe changes in the abundance and distribution of biota. This relationship has been studied extensively for the macrofaunal communities, but not sufficiently so for the bacterial ones. The aim of the present study was to explore the biodiversity patterns of bacterial assemblages and to examine whether these patterns are associated with biogeographic and environmental factors. For this purpose, sediment samples were collected from five lagoons located in the Amvrakikos Gulf (Ionian Sea, Western Greece). DNA was extracted from the sediment and was further processed through 16S rRNA pyrosequencing. The results of this exploratory study imply that salinity is the environmental factor best correlated with the bacterial community pattern, which has also been suggested in similar studies but for macrofaunal community patterns. In addition, the bacterial community of the brackish lagoons is differentiated from that of the brackish-marine lagoons. The findings of this study indicate that the studied lagoons have distinct bacterial communities.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Geologic Sediments/microbiology , Microbiota , Salinity , Greece , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
18.
Mol Phylogenet Evol ; 98: 147-60, 2016 May.
Article in English | MEDLINE | ID: mdl-26899923

ABSTRACT

Strains of Cyanobacteria isolated from mats of 9 thermal springs of Greece have been studied for their taxonomic evaluation. A polyphasic taxonomic approach was employed which included: morphological observations by light microscopy and scanning electron microscopy, maximum parsimony, maximum likelihood and Bayesian analysis of 16S rDNA sequences, secondary structural comparisons of 16S-23S rRNA Internal Transcribed Spacer sequences, and finally environmental data. The 17 cyanobacterial isolates formed a diverse group that contained filamentous, coccoid and heterocytous strains. These included representatives of the polyphyletic genera of Synechococcus and Phormidium, and the orders Oscillatoriales, Spirulinales, Chroococcales and Nostocales. After analysis, at least 6 new taxa at the genus level provide new evidence in the taxonomy of Cyanobacteria and highlight the abundant diversity of thermal spring environments with many potential endemic species or ecotypes.


Subject(s)
Cyanobacteria/classification , Hot Springs/microbiology , Bayes Theorem , Cyanobacteria/cytology , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/ultrastructure , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Greece , Likelihood Functions , Microscopy , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , Sequence Analysis, DNA
19.
Environ Microbiol ; 18(4): 1122-36, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26487573

ABSTRACT

Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2 -saturated fluids at temperatures up to 220°C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications.


Subject(s)
Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Ecosystem , Hydrothermal Vents/microbiology , Archaea/isolation & purification , Bacteria/isolation & purification , Base Sequence , Geology , Metagenomics , RNA, Ribosomal, 16S/genetics , Temperature
20.
Bioinform Biol Insights ; 9: 75-88, 2015.
Article in English | MEDLINE | ID: mdl-25983555

ABSTRACT

Advances in next-generation sequencing (NGS) have allowed significant breakthroughs in microbial ecology studies. This has led to the rapid expansion of research in the field and the establishment of "metagenomics", often defined as the analysis of DNA from microbial communities in environmental samples without prior need for culturing. Many metagenomics statistical/computational tools and databases have been developed in order to allow the exploitation of the huge influx of data. In this review article, we provide an overview of the sequencing technologies and how they are uniquely suited to various types of metagenomic studies. We focus on the currently available bioinformatics techniques, tools, and methodologies for performing each individual step of a typical metagenomic dataset analysis. We also provide future trends in the field with respect to tools and technologies currently under development. Moreover, we discuss data management, distribution, and integration tools that are capable of performing comparative metagenomic analyses of multiple datasets using well-established databases, as well as commonly used annotation standards.

SELECTION OF CITATIONS
SEARCH DETAIL