Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6421, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828069

ABSTRACT

Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.

3.
ACS Appl Mater Interfaces ; 10(9): 8110-8116, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29436223

ABSTRACT

We report the piezotronic effect on the performance of humidity detection based on a back-to-back Schottky contacted monolayer MoS2 device. By introducing an upswept mechanical strain, the in-plane electrical polarization can be induced at the MoS2/metal junction region. The polarization charges can modify the Schottky barrier height at the interface of MoS2/metal junction, subsequently improving the sensitivity of the humidity sensing. An energy band diagram is proposed to explain the experiment phenomenon of the humidity sensor. This work provides a simple way to enhance the sensitivity of ultrathin two-dimensional-materials-based sensors by the piezotronic effect, which has great potential applications in electronic skin, human-computer interfacing, gas sensing, and environment monitoring.

4.
Adv Mater ; 30(8)2018 Feb.
Article in English | MEDLINE | ID: mdl-29318679

ABSTRACT

Utilizing magnetic field directly modulating/turning the charge carrier transport behavior of field-effect transistor (FET) at ambient conditions is an enormous challenge in the field of micro-nanoelectronics. Here, a new type of magnetic-induced-piezopotential gated field-effect-transistor (MIPG-FET) base on laminate composites is proposed, which consists of Terfenol-D, a ferroelectric single crystal (PMNPT), and MoS2 flake. When applying an external magnetic field to the MIPG-FET, the piezopotential of PMNPT triggered by magnetostriction of the Terfenol-D can serve as the gate voltage to effectively modulate/control the carrier transport process and the corresponding drain current at room temperature. Considering the two polarization states of PMNPT, the drain current is diminished from 9.56 to 2.9 µA in the Pup state under a magnetic field of 33 mT, and increases from 1.41 to 4.93 µA in the Pdown state under a magnetic field of 42 mT and at a drain voltage of 3 V. The current on/off ratios in these states are 330% and 432%, respectively. This work provides a novel noncontact coupling method among magnetism, piezoelectricity, and semiconductor properties, which may have extremely important applications in magnetic sensors, memory and logic devices, micro-electromechanical systems, and human-machine interfacing.

5.
Nanoscale Res Lett ; 11(1): 281, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27255901

ABSTRACT

In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

6.
ACS Nano ; 10(1): 1572-9, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26670330

ABSTRACT

Flexible self-powered sensing is urgently needed for wearable, portable, sustainable, maintenance-free and long-term applications. Here, we developed a flexible and self-powered GaN membrane-based ultraviolet (UV) photoswitch with high on/off ratio and excellent sensitivity. Even without any power supply, the driving force of UV photogenerated carriers can be well boosted by the combination of both built-in electric field and piezoelectric polarization field. The asymmetric metal-semiconductor-metal structure has been elaborately utilized to enhance the carrier separation and transport for highly sensitive UV photoresponse. Its UV on/off ratio and detection sensitivity reach to 4.67 × 10(5) and 1.78 × 10(12) cm·Hz(0.5) W(1-), respectively. Due to its excellent mechanical flexibility, the piezoelectric polarization field in GaN membrane can be easily tuned/controlled based on piezo-phototronic effect. Under 1% strain, a stronger and broader depletion region can be obtained to further enhance UV on/off ratio up to 154%. As a result, our research can not only provide a deep understanding of local electric field effects on self-powered optoelectronic detection, but also promote the development of self-powered flexible optoelectronic devices and integrated systems.

7.
ACS Nano ; 10(1): 1546-51, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26695840

ABSTRACT

Two-dimensional (2D) molybdenum disulfide (MoS2) is an exciting material due to its unique electrical, optical, and piezoelectric properties. Owing to an intrinsic band gap of 1.2-1.9 eV, monolayer or a-few-layer MoS2 is used for fabricating field effect transistors (FETs) with high electron mobility and on/off ratio. However, the traditional FETs are controlled by an externally supplied gate voltage, which may not be sensitive enough to directly interface with a mechanical stimulus for applications in electronic skin. Here we report a type of top-pressure/force-gated field effect transistors (PGFETs) based on a hybrid structure of a 2D MoS2 flake and 1D ZnO nanowire (NW) array. Once an external pressure is applied, the piezoelectric polarization charges created at the tips of ZnO NWs grown on MoS2 act as a gate voltage to tune/control the source-drain transport property in MoS2. At a 6.25 MPa applied stimulus on a packaged device, the source-drain current can be tuned for ∼25%, equivalent to the results of applying an extra -5 V back gate voltage. Another type of PGFET with a dielectric layer (Al2O3) sandwiched between MoS2 and ZnO also shows consistent results. A theoretical model is proposed to interpret the received data. This study sets the foundation for applying the 2D material-based FETs in the field of artificial intelligence.

8.
Nanotechnology ; 25(45): 455503, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25333328

ABSTRACT

An AC magnetic field, which is a carrier of information, is distributed everywhere and is continuous. How to use and detect this field has been an ongoing topic over the past few decades. Conventional magnetic sensors are usually based on the Hall Effect, the fluxgate, a superconductor quantum interface or magnetoelectric or magnetoresistive sensing. Here, a flexible, simple, low-cost and self-powered active piezoelectric nanogenerator (NG) is successfully demonstrated as an AC magnetic field sensor at room temperature. The amplitude and frequency of a magnetic field can both be accurately sensed by the NG. The output voltage of the NG has a good linearity with a measured magnetic field. The detected minute magnetic field is as low as 1.2 × 10(-7) tesla, which is 400 times greater than a commercial magnetic sensor that uses the Hall Effect. In comparison to the existing technologies, an NG is a room-temperature self-powered active sensor that is very simple and very cheap for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...