Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Viruses ; 16(4)2024 03 22.
Article in English | MEDLINE | ID: mdl-38675831

ABSTRACT

Data on COVID-19 mortality among patients in intensive care units (ICUs) from Eastern and/or Southern European countries, including Greece, are limited. The purpose of this study was to evaluate the ICU mortality trends among critically ill COVID-19 patients during the first two years of the pandemic in Greece and to further investigate if certain patients' clinical characteristics contributed to this outcome. We conducted a multi-center retrospective observational study among five large university hospitals in Greece, between February 2020 and January 2022. All adult critically ill patients with confirmed COVID-19 disease who required ICU admission for at least 24 h were eligible. In total, 1462 patients (66.35% males) were included in this study. The mean age of this cohort was 64.9 (±13.27) years old. The 28-day mortality rate was 35.99% (n = 528), while the overall in-hospital mortality was 50.96% (n = 745). Cox regression analysis demonstrated that older age (≥65 years old), a body mass index within the normal range, and a delay in ICU admission from symptom onset, as well as worse baseline clinical severity scores upon ICU admission, were associated with a greater risk of death. Mortality of critically ill COVID-19 patients was high during the first two years of the pandemic in Greece but comparable to other countries. Risk factors for death presented in this study are not different from those that have already been described for COVID-19 in other studies.


Subject(s)
COVID-19 , Critical Illness , Hospital Mortality , Intensive Care Units , Humans , COVID-19/mortality , COVID-19/epidemiology , Greece/epidemiology , Male , Female , Middle Aged , Retrospective Studies , Intensive Care Units/statistics & numerical data , Aged , Hospital Mortality/trends , Critical Illness/mortality , SARS-CoV-2 , Risk Factors , Aged, 80 and over , Pandemics , Adult
2.
J Pers Med ; 13(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38138927

ABSTRACT

BACKGROUND: Stewart's approach is known to have better diagnostic accuracy for the identification of metabolic acid-base disturbances compared to traditional methods based either on plasma bicarbonate concentration ([HCO3-]) and anion gap (AG) or on base excess/deficit (BE). This study aimed to identify metabolic acid-base disorders using either Stewart's or traditional approaches in critically ill COVID-19 patients admitted to the ICU, to recognize potential hidden acid-base metabolic abnormalities and to assess the prognostic value of these abnormalities for patient outcome. METHODS: This was a single-center retrospective study, in which we collected data from patients with severe COVID-19 admitted to the ICU. Electronical files were used to retrieve data for arterial blood gases, serum electrolytes, and proteins and to derive [HCO3-], BE, anion gap (AG), AG adjusted for albumin (AGadj), strong ion difference, strong ion gap (SIG), and SIG corrected for water excess/deficit (SIGcorr). The acid-base status was evaluated in each patient using the BE, [HCO3-], and physicochemical approaches. RESULTS: We included 185 patients. The physicochemical approach detected more individuals with metabolic acid-base abnormalities than the BE and [HCO3-] approaches (p < 0.001), and at least one acid-base disorder was recognized in most patients. According to the physicochemical method, 170/185 patients (91.4%) had at least one disorder, as opposed to the number of patients identified using the BE 90/186 (48%) and HCO3 62/186 (33%) methods. Regarding the derived acid-base status variables, non-survivors had greater AGadj, (p = 0.013) and SIGcorr (p = 0.035) compared to survivors. CONCLUSIONS: The identification of hidden acid-base disturbances may provide a detailed understanding of the underlying conditions in patients and of the possible pathophysiological mechanisms implicated. The association of these acid-base abnormalities with mortality provides the opportunity to recognize patients at increased risk of death and support them accordingly.

3.
J Clin Med ; 12(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762846

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been a pandemic since 2020, and depending on the SARS-CoV-2 mutation, different pandemic waves have been observed. The aim of this study was to compare the baseline characteristics of patients in two phases of the pandemic and evaluate possible predictors of mortality. METHODS: This is a retrospective multicenter observational study that included patients with COVID-19 in 4 different centers in Greece. Patients were divided into two groups depending on the period during which they were infected during the Delta and Omicron variant predominance. RESULTS: A total of 979 patients (433 Delta, 546 Omicron) were included in the study (median age 67 years (54, 81); 452 [46.2%] female). Compared to the Omicron period, the patients during the Delta period were younger (median age [IQR] 65 [51, 77] vs. 70 [55, 83] years, p < 0.001) and required a longer duration of hospitalization (8 [6, 13] vs. 7 [5, 12] days, p = 0.001), had higher procalcitonin levels (ng/mL): 0.08 [0.05, 0.17] vs. 0.06 [0.02, 0.16], p = 0.005, ferritin levels (ng/mL): 301 [159, 644] vs. 239 [128, 473], p = 0.002, C- reactive protein levels (mg/L): 40.4 [16.7, 98.5] vs. 31.8 [11.9, 81.7], p = 0.003, and lactate dehydrogenase levels (U/L): 277 [221, 375] vs. 255 [205, 329], p < 0.001. The Charlson Comorbidity Index was lower (3 [0, 5] vs. 4 [1, 6], p < 0.001), and the extent of disease on computed tomography (CT) was greater during the Delta wave (p < 0.001). No evidence of a difference in risk of death or admission to the intensive care unit was found between the two groups. Age, cardiovascular events, acute kidney injury during hospitalization, extent of disease on chest CT, D-dimer, and neutrophil/lymphocyte ratio values were identified as independent predictors of mortality for patients in the Delta period. Cardiovascular events and acute liver injury during hospitalization and the PaO2/FiO2 ratio on admission were identified as independent predictors of mortality for patients in the Omicron period. CONCLUSIONS: In the Omicron wave, patients were older with a higher number of comorbidities, but patients with the Delta variant had more severe disease and a longer duration of hospitalization.

4.
J Pers Med ; 13(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37373897

ABSTRACT

OBJECTIVE: The impact of severe infection from COVID-19 and the resulting need for life support in an ICU environment is a fact that caused immense pressure in healthcare systems around the globe. Accordingly, elderly people faced multiple challenges, especially after admission to the ICU. On this basis, we performed this study to assess the impact of age on COVID-19 mortality in critically ill patients. MATERIALS AND METHODS: In this retrospective study, we collected data from 300 patients who were hospitalized in the ICU of a Greek respiratory hospital. We split patients into two age groups using a threshold of 65 years old. The primary objective of the study was the survival of patients in a follow up period of 60 days after their admission to the ICU. Secondary objectives were to determine whether mortality is affected by other factors, including sepsis and clinical and laboratory factors, Charlson Comorbidity Index (CCI), APACHE II and d-dimers, CRP, etc. Results: The survival of all patients in the ICU was 75.7%. Those in the <65 years old age group expressed a survival rate of 89.3%, whereas those in the ≥65 years old age group had a survival rate of 58% (p-value < 0.001). In the multivariate Cox regression, the presence of sepsis and an increased CCI were independent predictors of mortality in 60 days (p-value < 0.001), while the age group did not maintain its statistical significance (p-value = 0.320). CONCLUSIONS: Age alone as a simple number is not capable of predicting mortality in patients with severe COVID-19 in the ICU. We must use more composite clinical markers that may better reflect the biological age of patients, such as CCI. Moreover, the effective control of infections in the ICU is of utmost importance for the survival of patients, since avoiding septic complications can drastically improve the prognosis of all patients, regardless of age.

5.
J Pers Med ; 13(4)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37109014

ABSTRACT

INTRODUCTION: Efficient clinical scores predicting the outcome of severe COVID-19 pneumonia may play a pivotal role in patients' management. The aim of this study was to assess the modified Severe COvid Prediction Estimate score (mSCOPE) index as a predictor of mortality in patients admitted to the ICU due to severe COVID-19 pneumonia. MATERIALS AND METHODS: In this retrospective observational study, 268 critically ill COVID-19 patients were included. Demographic and laboratory characteristics, comorbidities, disease severity, and outcome were retrieved from the electronical medical files. The mSCOPE was also calculated. RESULTS: An amount of 70 (26.1%) of patients died in the ICU. These patients had higher mSCOPE score compared to patients who survived (p < 0.001). mSCOPE correlated to disease severity (p < 0.001) and to the number and severity of comorbidities (p < 0.001). Furthermore, mSCOPE significantly correlated with days on mechanical ventilation (p < 0.001) and days of ICU stay (p = 0.003). mSCOPE was found to be an independent predictor of mortality (HR:1.219, 95% CI: 1.010-1.471, p = 0.039), with a value ≥ 6 predicting poor outcome with a sensitivity (95%CI) 88.6%, specificity 29.7%, a positive predictive value of 31.5%, and a negative predictive value of 87.7%. CONCLUSION: mSCOPE score could be proved useful in patients' risk stratification, guiding clinical interventions in patients with severe COVID-19.

6.
J Fungi (Basel) ; 8(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36012869

ABSTRACT

BACKGROUND: COVID-19-associated fungal infections seem to be a concerning issue. The aim of this study was to assess the incidence of fungal infections, the possible risk factors, and their effect on outcomes of critically ill patients with COVID-19. METHODS: A retrospective observational study was conducted in the COVID-19 ICU of the First Respiratory Department of National and Kapodistrian University of Athens in Sotiria Chest Diseases Hospital between 27 August 2020 and 10 November 2021. RESULTS: Here, 178 patients were included in the study. Nineteen patients (10.7%) developed fungal infection, of which five had COVID-19 associated candidemia, thirteen had COVID-19 associated pulmonary aspergillosis, and one had both. Patients with fungal infection were younger, had a lower Charlson Comorbidity Index, and had a lower PaO2/FiO2 ratio upon admission. Regarding health-care factors, patients with fungal infections were treated more frequently with Tocilizumab, a high regimen of dexamethasone, continuous renal replacement treatment, and were supported more with ECMO. They also had more complications, especially infections, and subsequently developed septic shock more frequently. Finally, patients with fungal infections had a longer length of ICU stay, as well as length of mechanical ventilation, although no statistically significant difference was reported on 28-day and 90-day mortality. CONCLUSIONS: Fungal infections seem to have a high incidence in COVID-19 critically ill patients and specific risk factors are identified. However, fungal infections do not seem to burden on mortality.

7.
J Clin Med ; 11(7)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35407625

ABSTRACT

Patients with severe COVID-19 belong to a population at high risk of invasive fungal infections (IFIs), with a reported incidence of IFIs in critically ill COVID-19 patients ranging between 5% and 26.7%. Common factors in these patients, such as multiple organ failure, immunomodulating/immunocompromising treatments, the longer time on mechanical ventilation, renal replacement therapy or extracorporeal membrane oxygenation, make them vulnerable candidates for fungal infections. In addition to that, SARS-CoV2 itself is associated with significant dysfunction in the patient's immune system involving both innate and acquired immunity, with reduction in both CD4+ T and CD8+ T lymphocyte counts and cytokine storm. The emerging question is whether SARS-CoV-2 inherently predisposes critically ill patients to fungal infections or the immunosuppressive therapy constitutes the igniting factor for invasive mycoses. To approach the dilemma, one must consider the unique pathogenicity of SARS-CoV-2 with the deranged immune response it provokes, review the well-known effects of immunosuppressants and finally refer to current literature to probe possible causal relationships, synergistic effects or independent risk factors. In this review, we aimed to identify the prevalence, risk factors and mortality associated with IFIs in mechanically ventilated patients with COVID-19.

8.
J Clin Med ; 11(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35330044

ABSTRACT

During the current pandemic, we witnessed a rise of post-intubation tracheal stenosis (PITS) in patients intubated due to COVID-19. We prospectively analyzed data from patients referred to our institution during the last 18 months for severe symptomatic post-intubation upper airway complications. Interdisciplinary bronchoscopic and/or surgical management was offered. Twenty-three patients with PITS and/or tracheoesophageal fistulae were included. They had undergone 31.85 (±22.7) days of ICU hospitalization and 17.35 (±7.4) days of intubation. Tracheal stenoses were mostly complex, located in the subglottic or mid-tracheal area. A total of 83% of patients had fracture and distortion of the tracheal wall. Fifteen patients were initially treated with rigid bronchoscopic modalities and/or stent placement and eight patients with tracheal resection-anastomosis. Post-treatment relapse in two of the bronchoscopically treated patients required surgery, while two of the surgically treated patients required rigid bronchoscopy and stent placement. Transient, non-life-threatening post-treatment complications developed in 60% of patients and were all managed successfully. The histopathology of the resected tracheal specimens didn't reveal specific alterations in comparison to pre-COVID-era PITS cases. Prolonged intubation, pronation maneuvers, oversized tubes or cuffs, and patient- or disease-specific factors may be pathogenically implicated. An increase of post-COVID PITS is anticipated. Careful prevention, early detection and effective management of these iatrogenic complications are warranted.

9.
Respiration ; 101(3): 262-271, 2022.
Article in English | MEDLINE | ID: mdl-34592744

ABSTRACT

INTRODUCTION: Treatment of interstitial lung diseases (ILDs) other than idiopathic pulmonary fibrosis (IPF) often includes systemic corticosteroids. Use of steroid-sparing agents is amenable to avoid potential side effects. METHODS: Functional indices and high-resolution computed tomography (HRCT) patterns of patients with non-IPF ILDs receiving mycophenolate mofetil (MMF) with a minimum follow-up of 1 year were analyzed. Two independent radiologists and a machine learning software system (Imbio 1.4.2.) evaluated HRCT patterns. RESULTS: Fifty-five (n = 55) patients were included in the analysis (male: 30 [55%], median age: 65.0 [95% CI: 59.7-70.0], mean forced vital capacity %predicted [FVC %pred.] ± standard deviation [SD]: 69.4 ± 18.3, mean diffusing capacity of lung for carbon monoxide %pred. ± SD: 40.8 ± 14.3, hypersensitivity pneumonitis: 26, connective tissue disease-ILDs [CTD-ILDs]: 22, other ILDs: 7). There was no significant difference in mean FVC %pred. post-6 months (1.59 ± 2.04) and 1 year (-0.39 ± 2.49) of treatment compared to baseline. Radiographic evaluation showed no significant difference between baseline and post-1 year %ground glass opacities (20.0 [95% CI: 14.4-30.0] vs. 20.0 [95% CI: 14.4-25.6]) and %reticulation (5.0 [95% CI: 2.0-15.6] vs. 7.5 [95% CI: 2.0-17.5]). A similar performance between expert radiologists and Imbio software analysis was observed in assessing ground glass opacities (intraclass correlation coefficient [ICC] = 0.73) and reticulation (ICC = 0.88). Fourteen patients (25.5%) reported at least one side effect and 8 patients (14.5%) switched to antifibrotics due to disease progression. CONCLUSION: Our data suggest that MMF is a safe and effective steroid-sparing agent leading to disease stabilization in a proportion of patients with non-IPF ILDs. Machine learning software systems may exhibit similar performance to specialist radiologists and represent fruitful diagnostic and prognostic tools.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Aged , Female , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/drug therapy , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/drug therapy , Machine Learning , Male , Middle Aged , Mycophenolic Acid/adverse effects , Mycophenolic Acid/therapeutic use , Vital Capacity
10.
J Pers Med ; 11(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203880

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread globally, becoming a huge public health challenge. Even though the vast majority of patients are asymptomatic, some patients present with pneumonia, acute respiratory distress syndrome (ARDS), septic shock, and death. It has been shown in several studies that the severity and clinical outcomes are related to dysregulated antiviral immunity and enhanced and persistent systemic inflammation. Corticosteroids have been used for the treatment of COVID-19 patients, as they are reported to elicit benefits by reducing lung inflammation and inflammation-induced lung injury. Dexamethasone has gained a major role in the therapeutic algorithm of patients with COVID-19 pneumonia requiring supplemental oxygen or on mechanical ventilation. Its wide anti-inflammatory action seems to form the basis for its beneficial action, taming the overwhelming "cytokine storm". Amid a plethora of scientific research on therapeutic options for COVID-19, there are still unanswered questions about the right timing, right dosing, and right duration of the corticosteroid treatment. The aim of this review article was to summarize the data on the dexamethasone treatment in COVID-19 and outline the clinical considerations of corticosteroid therapy in these patients.

11.
Diagnostics (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35054223

ABSTRACT

BACKGROUND: Although several studies have been launched towards the prediction of risk factors for mortality and admission in the intensive care unit (ICU) in COVID-19, none of them focuses on the development of explainable AI models to define an ICU scoring index using dynamically associated biological markers. METHODS: We propose a multimodal approach which combines explainable AI models with dynamic modeling methods to shed light into the clinical features of COVID-19. Dynamic Bayesian networks were used to seek associations among cytokines across four time intervals after hospitalization. Explainable gradient boosting trees were trained to predict the risk for ICU admission and mortality towards the development of an ICU scoring index. RESULTS: Our results highlight LDH, IL-6, IL-8, Cr, number of monocytes, lymphocyte count, TNF as risk predictors for ICU admission and survival along with LDH, age, CRP, Cr, WBC, lymphocyte count for mortality in the ICU, with prediction accuracy 0.79 and 0.81, respectively. These risk factors were combined with dynamically associated biological markers to develop an ICU scoring index with accuracy 0.9. CONCLUSIONS: to our knowledge, this is the first multimodal and explainable AI model which quantifies the risk of intensive care with accuracy up to 0.9 across multiple timepoints.

12.
Nat Immunol ; 22(1): 32-40, 2021 01.
Article in English | MEDLINE | ID: mdl-33277638

ABSTRACT

A central paradigm of immunity is that interferon (IFN)-mediated antiviral responses precede pro-inflammatory ones, optimizing host protection and minimizing collateral damage1,2. Here, we report that for coronavirus disease 2019 (COVID-19) this paradigm does not apply. By investigating temporal IFN and inflammatory cytokine patterns in 32 moderate-to-severe patients with COVID-19 hospitalized for pneumonia and longitudinally followed for the development of respiratory failure and death, we reveal that IFN-λ and type I IFN production were both diminished and delayed, induced only in a fraction of patients as they became critically ill. On the contrary, pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-6 and IL-8 were produced before IFNs in all patients and persisted for a prolonged time. This condition was reflected in blood transcriptomes wherein prominent IFN signatures were only seen in critically ill patients who also exhibited augmented inflammation. By comparison, in 16 patients with influenza (flu) hospitalized for pneumonia with similar clinicopathological characteristics to those of COVID-19 and 24 nonhospitalized patients with flu with milder symptoms, IFN-λ and type I IFN were robustly induced earlier, at higher levels and independently of disease severity, whereas pro-inflammatory cytokines were only acutely produced. Notably, higher IFN-λ concentrations in patients with COVID-19 correlated with lower viral load in bronchial aspirates and faster viral clearance and a higher IFN-λ to type I IFN ratio correlated with improved outcome for critically ill patients. Moreover, altered cytokine patterns in patients with COVID-19 correlated with longer hospitalization and higher incidence of critical disease and mortality compared to flu. These data point to an untuned antiviral response in COVID-19, contributing to persistent viral presence, hyperinflammation and respiratory failure.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza, Human/immunology , Interferon Type I/immunology , Interferons/immunology , SARS-CoV-2/immunology , Antiviral Agents/immunology , Antiviral Agents/metabolism , COVID-19/genetics , COVID-19/virology , Cytokines/genetics , Cytokines/immunology , Disease Progression , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Humans , Immunity/genetics , Inflammation/genetics , Inflammation/immunology , Influenza, Human/genetics , Interferon Type I/genetics , Interferons/genetics , Length of Stay , Prognosis , SARS-CoV-2/physiology , Viral Load/genetics , Viral Load/immunology , Interferon Lambda
13.
Cell Host Microbe ; 27(6): 992-1000.e3, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32320677

ABSTRACT

Proper management of COVID-19 mandates better understanding of disease pathogenesis. The sudden clinical deterioration 7-8 days after initial symptom onset suggests that severe respiratory failure (SRF) in COVID-19 is driven by a unique pattern of immune dysfunction. We studied immune responses of 54 COVID-19 patients, 28 of whom had SRF. All patients with SRF displayed either macrophage activation syndrome (MAS) or very low human leukocyte antigen D related (HLA-DR) expression accompanied by profound depletion of CD4 lymphocytes, CD19 lymphocytes, and natural killer (NK) cells. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production by circulating monocytes was sustained, a pattern distinct from bacterial sepsis or influenza. SARS-CoV-2 patient plasma inhibited HLA-DR expression, and this was partially restored by the IL-6 blocker Tocilizumab; off-label Tocilizumab treatment of patients was accompanied by increase in circulating lymphocytes. Thus, the unique pattern of immune dysregulation in severe COVID-19 is characterized by IL-6-mediated low HLA-DR expression and lymphopenia, associated with sustained cytokine production and hyper-inflammation.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Respiratory Insufficiency/immunology , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 , Female , HLA-DR Antigens/immunology , Humans , Inflammation/pathology , Interleukin-6/immunology , Killer Cells, Natural/pathology , Lymphopenia/pathology , Macrophage Activation , Male , Monocytes/pathology , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...