Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 339: 117866, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37030236

ABSTRACT

Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.


Subject(s)
Bioreactors , Carotenoids , Biomass , Fatty Acids , Fermentation
2.
Ultrason Sonochem ; 36: 362-366, 2017 May.
Article in English | MEDLINE | ID: mdl-28069222

ABSTRACT

This work is focused on the optimization of the ultrasound-assisted extraction of antioxidant compounds with photoprotective effect from palm pressed fiber. The influence of ultrasound intensity and pulse cycle was investigated by means of a central composite rotational design. The optimized condition was ultrasound intensity of 120W.cm-2 and pulse factor of 0.4, yielding 3.24wt%. Compounds such as fatty acids, ß-sitosterol, α-tocopherol, squalene, total phenolics and carotene were identified. The extract presented antioxidant activity towards synthetic (2,2-diphenyl-1-picrylhydrazyl - DPPH, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) - ABTS) and biological radicals (Hydroxyl - OH), besides a sun protection factor of 15.01. Polar extracts from palm pressed fiber are promising candidates for use in cosmetic and pharmaceutical formulation since they present high antioxidant activity towards different radicals, combined with the high sun protection factor.


Subject(s)
Arecaceae/chemistry , Chemical Fractionation/methods , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Ultrasonic Waves , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Plant Extracts/chemistry , Sunscreening Agents/chemistry , Sunscreening Agents/isolation & purification , Sunscreening Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL