Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(11): 4769-4777, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35254810

ABSTRACT

We report here on the synthesis, crystal structure, optoelectronic and vibrational properties, as well as the DFT calculations of the novel trimethylsulfonium tin trichloride (CH3)3SSnCl3. The air-stable compound is prepared by reacting the (CH3)3SCl and SnCl2 solid precursors in evacuated silica tubes at 100 °C. According to powder X-ray diffraction and Rietveld refinement, it crystallizes at room temperature in the orthorhombic space group Pbca (No. 61) with isolated pyramids of [SnCl3]- and (CH3)3S+ units. UV-vis reflectance and photoluminescence spectroscopies reveal a direct energy band gap of 3.85 eV, accompanied by a broad Stokes-shifted luminescence signal. Photoexcitation of the compound at room temperature and at -196 °C results in broadband luminescence with weak magenta emission centered at 400 nm using an excitation at 250 nm. First principal calculations provide insight into the physical properties through the electron and phonon density of states. Multitemperature Raman spectroscopy and differential scanning calorimetry reveal a reversible phase transition at ca. 70 °C that affects the vibrational modes of the [SnCl3]-. By dissolving (CH3)3SSnCl3 in dimethylformamide in ambient air for a week, oxidation of tin occurs in the "defect" perovskite ((CH3)3S)2SnCl6. The crystal structure of ((CH3)3S)2SnCl6 is also determined with high accuracy via single-crystal X-ray diffraction (cubic space group Pa-3 (No. 205)) and compared with (CH3)3SSnCl3 via Hirshfeld surface analysis.

2.
Nanoscale ; 9(29): 10256-10262, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28696467

ABSTRACT

Two easy approaches are successfully employed for the preparation of nitrogen-doped carbon nanodot (NCND)-clay hybrids (bulk solids and thin films). Fluorescent and small NCNDs are intercalated within the interlayer space of LAPONITE® clay with a simple ion exchange reaction in bulk or embedded between functionalized LAPONITE® sheets by combining a layer-by-layer approach with a self-assembly process. In both cases, homogeneous hybrids with 2D-ordered NCNDs (accounting for >20 wt%) are produced, with the NCND optoelectronic properties preserved. Drop casting of suspensions or self-assembly on flexible substrates allows the fabrication of luminescent flexible films. The transparency of the films is found to be adjustable either by controlling the concentration of the drop-cast suspensions or by the number of layers in the self-assembly procedure. The prepared films are stable over time: the inert LAPONITE® platelets not only guide the highly ordered 2D assemblies of NCNDs in the interlayer space but also protect them from external agents, which could affect their surfaces and thus alter their optoelectronic properties.

3.
J Phys Chem B ; 121(17): 4610-4619, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28398066

ABSTRACT

Strontium borophosphate glasses of composition xSrO·(1 - x)·[0.68B2O3·0.32P2O5], 0.40 ≤ x ≤ 0.68, have been prepared by fast quenching of high-temperature melts and studied using Raman spectroscopy. In order to comprehend and confirm the obtained spectroscopic Raman data, crystalline compounds and glass-ceramics of analogous compositions were also prepared and studied. Also, ab initio molecular electronic structure theory was used to predict and confirm the experimental vibrational spectra The comparison between theoretical and experimental results showed a good overall agreement. The analysis has focused on a new detailed interpretation of the P-O-B Raman bands. Also, the analysis has revealed a divergent modification of the reported glasses near the meta-stoichiometry where the dominant species in the glass network were found to be borophosphate chains [BP2O9]5-, pyrophosphate P2O74-, and orthophosphate PO43- units.

4.
ACS Omega ; 2(5): 2090-2099, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457563

ABSTRACT

The special electronic, optical, thermal, and mechanical properties of graphene resulting from its 2D nature, as well as the ease of functionalizing it through a simple acid treatment, make graphene an ideal building block for the development of new hybrid nanostructures with well-defined dimensions and behavior. Such hybrids have great potential as active materials in applications such as gas storage, gas/liquid separation, photocatalysis, bioimaging, optoelectronics, and nanosensing. In this study, luminescent carbon dots (C-dots) were sandwiched between oxidized graphene sheets to form novel hybrid multilayer films. Our thin-film preparation approach combines self-assembly with the Langmuir-Schaefer deposition and uses graphene oxide nanosheets as template for grafting C-dots in a bidimensional array. Repeating the cycle results in a facile and low-cost layer-by-layer procedure for the formation of highly ordered hybrid multilayers, which were characterized by photoluminescence, UV-visible, X-ray photoelectron, and Raman spectroscopies, as well as X-ray diffraction and atomic force microscopy.

5.
Opt Express ; 20(22): 24735-40, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-23187237

ABSTRACT

The origins and first demonstration of structurally stable solids formed by use of radiation forces are presented. By experimentally proving that radiation forces can indeed produce stable solid material forms, a novel method enabling two- and three-dimensional (2d and 3d) microfabrication is introduced: An optical, non-contact single-step physical operation, reversible with respect to materials nature, based on the sole use of radiation forces. The present innovation is elucidated by the formation of polyisoprene and polybutadiene micro-solids, as well as plasmonic and fluorescent hybrids, respectively comprising Au nanoparticles and CdS quantum dots, together with novel concepts of polymeric fiber-drawing by radiation forces.

6.
Phys Chem Chem Phys ; 12(42): 14236-44, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-20882218

ABSTRACT

Low dimensional metal sulfide particles have been prepared in the interlayers of montmorillonites via reactions of the metal ion-exchanged clay minerals in aqueous dispersions with gaseous hydrogen sulfide. The montmorillonites separated from the Wyoming (USA) and Jelsový Potok (Slovakia) bentonites were saturated with Pb(2+) or Zn(2+). In the final nanohybrids, the smectite mineral can be incorporated with metal sulfide pillars and/or nanoparticles. Properties of the prepared materials were investigated by various analytical techniques. The formation of metal sulfide nanoparticles in the interlayer galleries was indicated by X-ray diffraction and energy dispersive X-ray analysis. About 50% of Pb(2+) or Zn(2+) present in montmorillonite has formed metal sulfide semiconducting units. Infrared spectroscopy and thermogravimetric analysis were used for characterization of starting materials and products. Ultraviolet-visible absorption and photoluminescence spectroscopies confirmed that final composite systems acquired the optical properties of the incorporated quantum low dimensional systems exhibiting blue shift of the energy gap and higher oscillator strength excitonic peaks. Larger amounts of metal sulfide nanoparticles were formed in montmorillonite Jelsový Potok probably as a consequence of its higher cation exchange capacity.

SELECTION OF CITATIONS
SEARCH DETAIL
...